This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: This theorem expresses two different facts from the two subset implications in this equality. In the forward direction, it says that the transitive closure has members of every rank below A . Stated another way, to construct a set at a given rank, you have to climb the entire hierarchy of ordinals below ( rankA ) , constructing at least one set at each level in order to move up the ranks. In the reverse direction, it says that every member of ( TCA ) has a rank below the rank of A , since intuitively it contains only the members of A and the members of those and so on, but nothing "bigger" than A . (Contributed by Mario Carneiro, 23-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tcrank | |- ( A e. U. ( R1 " On ) -> ( rank ` A ) = ( rank " ( TC ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankwflemb | |- ( A e. U. ( R1 " On ) <-> E. y e. On A e. ( R1 ` suc y ) ) |
|
| 2 | onsuc | |- ( y e. On -> suc y e. On ) |
|
| 3 | fveq2 | |- ( x = y -> ( R1 ` x ) = ( R1 ` y ) ) |
|
| 4 | 3 | raleqdv | |- ( x = y -> ( A. z e. ( R1 ` x ) ( rank ` z ) C_ ( rank " ( TC ` z ) ) <-> A. z e. ( R1 ` y ) ( rank ` z ) C_ ( rank " ( TC ` z ) ) ) ) |
| 5 | fveq2 | |- ( z = u -> ( rank ` z ) = ( rank ` u ) ) |
|
| 6 | fveq2 | |- ( z = u -> ( TC ` z ) = ( TC ` u ) ) |
|
| 7 | 6 | imaeq2d | |- ( z = u -> ( rank " ( TC ` z ) ) = ( rank " ( TC ` u ) ) ) |
| 8 | 5 7 | sseq12d | |- ( z = u -> ( ( rank ` z ) C_ ( rank " ( TC ` z ) ) <-> ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) ) |
| 9 | 8 | cbvralvw | |- ( A. z e. ( R1 ` y ) ( rank ` z ) C_ ( rank " ( TC ` z ) ) <-> A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) |
| 10 | 4 9 | bitrdi | |- ( x = y -> ( A. z e. ( R1 ` x ) ( rank ` z ) C_ ( rank " ( TC ` z ) ) <-> A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) ) |
| 11 | fveq2 | |- ( x = suc y -> ( R1 ` x ) = ( R1 ` suc y ) ) |
|
| 12 | 11 | raleqdv | |- ( x = suc y -> ( A. z e. ( R1 ` x ) ( rank ` z ) C_ ( rank " ( TC ` z ) ) <-> A. z e. ( R1 ` suc y ) ( rank ` z ) C_ ( rank " ( TC ` z ) ) ) ) |
| 13 | simpr | |- ( ( ( x e. On /\ A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) /\ ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) ) -> ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) ) |
|
| 14 | simprl | |- ( ( ( x e. On /\ A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) /\ ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) ) -> z e. ( R1 ` x ) ) |
|
| 15 | simplr | |- ( ( ( x e. On /\ A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) /\ ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) ) -> A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) |
|
| 16 | rankr1ai | |- ( z e. ( R1 ` x ) -> ( rank ` z ) e. x ) |
|
| 17 | fveq2 | |- ( y = ( rank ` z ) -> ( R1 ` y ) = ( R1 ` ( rank ` z ) ) ) |
|
| 18 | 17 | raleqdv | |- ( y = ( rank ` z ) -> ( A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) <-> A. u e. ( R1 ` ( rank ` z ) ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) ) |
| 19 | 18 | rspcv | |- ( ( rank ` z ) e. x -> ( A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) -> A. u e. ( R1 ` ( rank ` z ) ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) ) |
| 20 | 16 19 | syl | |- ( z e. ( R1 ` x ) -> ( A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) -> A. u e. ( R1 ` ( rank ` z ) ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) ) |
| 21 | r1elwf | |- ( z e. ( R1 ` x ) -> z e. U. ( R1 " On ) ) |
|
| 22 | r1rankidb | |- ( z e. U. ( R1 " On ) -> z C_ ( R1 ` ( rank ` z ) ) ) |
|
| 23 | ssralv | |- ( z C_ ( R1 ` ( rank ` z ) ) -> ( A. u e. ( R1 ` ( rank ` z ) ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) -> A. u e. z ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) ) |
|
| 24 | 21 22 23 | 3syl | |- ( z e. ( R1 ` x ) -> ( A. u e. ( R1 ` ( rank ` z ) ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) -> A. u e. z ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) ) |
| 25 | 20 24 | syld | |- ( z e. ( R1 ` x ) -> ( A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) -> A. u e. z ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) ) |
| 26 | 14 15 25 | sylc | |- ( ( ( x e. On /\ A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) /\ ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) ) -> A. u e. z ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) |
| 27 | rankval3b | |- ( z e. U. ( R1 " On ) -> ( rank ` z ) = |^| { x e. On | A. u e. z ( rank ` u ) e. x } ) |
|
| 28 | 27 | eleq2d | |- ( z e. U. ( R1 " On ) -> ( w e. ( rank ` z ) <-> w e. |^| { x e. On | A. u e. z ( rank ` u ) e. x } ) ) |
| 29 | 28 | biimpd | |- ( z e. U. ( R1 " On ) -> ( w e. ( rank ` z ) -> w e. |^| { x e. On | A. u e. z ( rank ` u ) e. x } ) ) |
| 30 | rankon | |- ( rank ` z ) e. On |
|
| 31 | 30 | oneli | |- ( w e. ( rank ` z ) -> w e. On ) |
| 32 | eleq2w | |- ( x = w -> ( ( rank ` u ) e. x <-> ( rank ` u ) e. w ) ) |
|
| 33 | 32 | ralbidv | |- ( x = w -> ( A. u e. z ( rank ` u ) e. x <-> A. u e. z ( rank ` u ) e. w ) ) |
| 34 | 33 | onnminsb | |- ( w e. On -> ( w e. |^| { x e. On | A. u e. z ( rank ` u ) e. x } -> -. A. u e. z ( rank ` u ) e. w ) ) |
| 35 | 31 34 | syl | |- ( w e. ( rank ` z ) -> ( w e. |^| { x e. On | A. u e. z ( rank ` u ) e. x } -> -. A. u e. z ( rank ` u ) e. w ) ) |
| 36 | 29 35 | sylcom | |- ( z e. U. ( R1 " On ) -> ( w e. ( rank ` z ) -> -. A. u e. z ( rank ` u ) e. w ) ) |
| 37 | 21 36 | syl | |- ( z e. ( R1 ` x ) -> ( w e. ( rank ` z ) -> -. A. u e. z ( rank ` u ) e. w ) ) |
| 38 | 37 | imp | |- ( ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) -> -. A. u e. z ( rank ` u ) e. w ) |
| 39 | rexnal | |- ( E. u e. z -. ( rank ` u ) e. w <-> -. A. u e. z ( rank ` u ) e. w ) |
|
| 40 | 38 39 | sylibr | |- ( ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) -> E. u e. z -. ( rank ` u ) e. w ) |
| 41 | 40 | adantl | |- ( ( ( x e. On /\ A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) /\ ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) ) -> E. u e. z -. ( rank ` u ) e. w ) |
| 42 | r19.29 | |- ( ( A. u e. z ( rank ` u ) C_ ( rank " ( TC ` u ) ) /\ E. u e. z -. ( rank ` u ) e. w ) -> E. u e. z ( ( rank ` u ) C_ ( rank " ( TC ` u ) ) /\ -. ( rank ` u ) e. w ) ) |
|
| 43 | 26 41 42 | syl2anc | |- ( ( ( x e. On /\ A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) /\ ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) ) -> E. u e. z ( ( rank ` u ) C_ ( rank " ( TC ` u ) ) /\ -. ( rank ` u ) e. w ) ) |
| 44 | simp2 | |- ( ( ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) /\ u e. z /\ ( ( rank ` u ) C_ ( rank " ( TC ` u ) ) /\ -. ( rank ` u ) e. w ) ) -> u e. z ) |
|
| 45 | tcid | |- ( z e. _V -> z C_ ( TC ` z ) ) |
|
| 46 | 45 | elv | |- z C_ ( TC ` z ) |
| 47 | 46 | sseli | |- ( u e. z -> u e. ( TC ` z ) ) |
| 48 | fveqeq2 | |- ( x = u -> ( ( rank ` x ) = w <-> ( rank ` u ) = w ) ) |
|
| 49 | 48 | rspcev | |- ( ( u e. ( TC ` z ) /\ ( rank ` u ) = w ) -> E. x e. ( TC ` z ) ( rank ` x ) = w ) |
| 50 | 49 | ex | |- ( u e. ( TC ` z ) -> ( ( rank ` u ) = w -> E. x e. ( TC ` z ) ( rank ` x ) = w ) ) |
| 51 | 44 47 50 | 3syl | |- ( ( ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) /\ u e. z /\ ( ( rank ` u ) C_ ( rank " ( TC ` u ) ) /\ -. ( rank ` u ) e. w ) ) -> ( ( rank ` u ) = w -> E. x e. ( TC ` z ) ( rank ` x ) = w ) ) |
| 52 | simp3l | |- ( ( ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) /\ u e. z /\ ( ( rank ` u ) C_ ( rank " ( TC ` u ) ) /\ -. ( rank ` u ) e. w ) ) -> ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) |
|
| 53 | 52 | sseld | |- ( ( ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) /\ u e. z /\ ( ( rank ` u ) C_ ( rank " ( TC ` u ) ) /\ -. ( rank ` u ) e. w ) ) -> ( w e. ( rank ` u ) -> w e. ( rank " ( TC ` u ) ) ) ) |
| 54 | simp1l | |- ( ( ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) /\ u e. z /\ ( ( rank ` u ) C_ ( rank " ( TC ` u ) ) /\ -. ( rank ` u ) e. w ) ) -> z e. ( R1 ` x ) ) |
|
| 55 | rankf | |- rank : U. ( R1 " On ) --> On |
|
| 56 | ffn | |- ( rank : U. ( R1 " On ) --> On -> rank Fn U. ( R1 " On ) ) |
|
| 57 | 55 56 | ax-mp | |- rank Fn U. ( R1 " On ) |
| 58 | r1tr | |- Tr ( R1 ` x ) |
|
| 59 | trel | |- ( Tr ( R1 ` x ) -> ( ( u e. z /\ z e. ( R1 ` x ) ) -> u e. ( R1 ` x ) ) ) |
|
| 60 | 58 59 | ax-mp | |- ( ( u e. z /\ z e. ( R1 ` x ) ) -> u e. ( R1 ` x ) ) |
| 61 | r1elwf | |- ( u e. ( R1 ` x ) -> u e. U. ( R1 " On ) ) |
|
| 62 | tcwf | |- ( u e. U. ( R1 " On ) -> ( TC ` u ) e. U. ( R1 " On ) ) |
|
| 63 | fvex | |- ( TC ` u ) e. _V |
|
| 64 | 63 | r1elss | |- ( ( TC ` u ) e. U. ( R1 " On ) <-> ( TC ` u ) C_ U. ( R1 " On ) ) |
| 65 | 62 64 | sylib | |- ( u e. U. ( R1 " On ) -> ( TC ` u ) C_ U. ( R1 " On ) ) |
| 66 | 60 61 65 | 3syl | |- ( ( u e. z /\ z e. ( R1 ` x ) ) -> ( TC ` u ) C_ U. ( R1 " On ) ) |
| 67 | fvelimab | |- ( ( rank Fn U. ( R1 " On ) /\ ( TC ` u ) C_ U. ( R1 " On ) ) -> ( w e. ( rank " ( TC ` u ) ) <-> E. x e. ( TC ` u ) ( rank ` x ) = w ) ) |
|
| 68 | 57 66 67 | sylancr | |- ( ( u e. z /\ z e. ( R1 ` x ) ) -> ( w e. ( rank " ( TC ` u ) ) <-> E. x e. ( TC ` u ) ( rank ` x ) = w ) ) |
| 69 | vex | |- z e. _V |
|
| 70 | 69 | tcel | |- ( u e. z -> ( TC ` u ) C_ ( TC ` z ) ) |
| 71 | ssrexv | |- ( ( TC ` u ) C_ ( TC ` z ) -> ( E. x e. ( TC ` u ) ( rank ` x ) = w -> E. x e. ( TC ` z ) ( rank ` x ) = w ) ) |
|
| 72 | 70 71 | syl | |- ( u e. z -> ( E. x e. ( TC ` u ) ( rank ` x ) = w -> E. x e. ( TC ` z ) ( rank ` x ) = w ) ) |
| 73 | 72 | adantr | |- ( ( u e. z /\ z e. ( R1 ` x ) ) -> ( E. x e. ( TC ` u ) ( rank ` x ) = w -> E. x e. ( TC ` z ) ( rank ` x ) = w ) ) |
| 74 | 68 73 | sylbid | |- ( ( u e. z /\ z e. ( R1 ` x ) ) -> ( w e. ( rank " ( TC ` u ) ) -> E. x e. ( TC ` z ) ( rank ` x ) = w ) ) |
| 75 | 44 54 74 | syl2anc | |- ( ( ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) /\ u e. z /\ ( ( rank ` u ) C_ ( rank " ( TC ` u ) ) /\ -. ( rank ` u ) e. w ) ) -> ( w e. ( rank " ( TC ` u ) ) -> E. x e. ( TC ` z ) ( rank ` x ) = w ) ) |
| 76 | 53 75 | syld | |- ( ( ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) /\ u e. z /\ ( ( rank ` u ) C_ ( rank " ( TC ` u ) ) /\ -. ( rank ` u ) e. w ) ) -> ( w e. ( rank ` u ) -> E. x e. ( TC ` z ) ( rank ` x ) = w ) ) |
| 77 | rankon | |- ( rank ` u ) e. On |
|
| 78 | eloni | |- ( ( rank ` u ) e. On -> Ord ( rank ` u ) ) |
|
| 79 | eloni | |- ( w e. On -> Ord w ) |
|
| 80 | ordtri3or | |- ( ( Ord ( rank ` u ) /\ Ord w ) -> ( ( rank ` u ) e. w \/ ( rank ` u ) = w \/ w e. ( rank ` u ) ) ) |
|
| 81 | 78 79 80 | syl2an | |- ( ( ( rank ` u ) e. On /\ w e. On ) -> ( ( rank ` u ) e. w \/ ( rank ` u ) = w \/ w e. ( rank ` u ) ) ) |
| 82 | 77 31 81 | sylancr | |- ( w e. ( rank ` z ) -> ( ( rank ` u ) e. w \/ ( rank ` u ) = w \/ w e. ( rank ` u ) ) ) |
| 83 | 3orass | |- ( ( ( rank ` u ) e. w \/ ( rank ` u ) = w \/ w e. ( rank ` u ) ) <-> ( ( rank ` u ) e. w \/ ( ( rank ` u ) = w \/ w e. ( rank ` u ) ) ) ) |
|
| 84 | 82 83 | sylib | |- ( w e. ( rank ` z ) -> ( ( rank ` u ) e. w \/ ( ( rank ` u ) = w \/ w e. ( rank ` u ) ) ) ) |
| 85 | 84 | orcanai | |- ( ( w e. ( rank ` z ) /\ -. ( rank ` u ) e. w ) -> ( ( rank ` u ) = w \/ w e. ( rank ` u ) ) ) |
| 86 | 85 | ad2ant2l | |- ( ( ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) /\ ( ( rank ` u ) C_ ( rank " ( TC ` u ) ) /\ -. ( rank ` u ) e. w ) ) -> ( ( rank ` u ) = w \/ w e. ( rank ` u ) ) ) |
| 87 | 86 | 3adant2 | |- ( ( ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) /\ u e. z /\ ( ( rank ` u ) C_ ( rank " ( TC ` u ) ) /\ -. ( rank ` u ) e. w ) ) -> ( ( rank ` u ) = w \/ w e. ( rank ` u ) ) ) |
| 88 | 51 76 87 | mpjaod | |- ( ( ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) /\ u e. z /\ ( ( rank ` u ) C_ ( rank " ( TC ` u ) ) /\ -. ( rank ` u ) e. w ) ) -> E. x e. ( TC ` z ) ( rank ` x ) = w ) |
| 89 | 88 | rexlimdv3a | |- ( ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) -> ( E. u e. z ( ( rank ` u ) C_ ( rank " ( TC ` u ) ) /\ -. ( rank ` u ) e. w ) -> E. x e. ( TC ` z ) ( rank ` x ) = w ) ) |
| 90 | 13 43 89 | sylc | |- ( ( ( x e. On /\ A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) /\ ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) ) -> E. x e. ( TC ` z ) ( rank ` x ) = w ) |
| 91 | 90 | expr | |- ( ( ( x e. On /\ A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) /\ z e. ( R1 ` x ) ) -> ( w e. ( rank ` z ) -> E. x e. ( TC ` z ) ( rank ` x ) = w ) ) |
| 92 | tcwf | |- ( z e. U. ( R1 " On ) -> ( TC ` z ) e. U. ( R1 " On ) ) |
|
| 93 | r1elssi | |- ( ( TC ` z ) e. U. ( R1 " On ) -> ( TC ` z ) C_ U. ( R1 " On ) ) |
|
| 94 | fvelimab | |- ( ( rank Fn U. ( R1 " On ) /\ ( TC ` z ) C_ U. ( R1 " On ) ) -> ( w e. ( rank " ( TC ` z ) ) <-> E. x e. ( TC ` z ) ( rank ` x ) = w ) ) |
|
| 95 | 93 94 | sylan2 | |- ( ( rank Fn U. ( R1 " On ) /\ ( TC ` z ) e. U. ( R1 " On ) ) -> ( w e. ( rank " ( TC ` z ) ) <-> E. x e. ( TC ` z ) ( rank ` x ) = w ) ) |
| 96 | 57 92 95 | sylancr | |- ( z e. U. ( R1 " On ) -> ( w e. ( rank " ( TC ` z ) ) <-> E. x e. ( TC ` z ) ( rank ` x ) = w ) ) |
| 97 | 21 96 | syl | |- ( z e. ( R1 ` x ) -> ( w e. ( rank " ( TC ` z ) ) <-> E. x e. ( TC ` z ) ( rank ` x ) = w ) ) |
| 98 | 97 | adantl | |- ( ( ( x e. On /\ A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) /\ z e. ( R1 ` x ) ) -> ( w e. ( rank " ( TC ` z ) ) <-> E. x e. ( TC ` z ) ( rank ` x ) = w ) ) |
| 99 | 91 98 | sylibrd | |- ( ( ( x e. On /\ A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) /\ z e. ( R1 ` x ) ) -> ( w e. ( rank ` z ) -> w e. ( rank " ( TC ` z ) ) ) ) |
| 100 | 99 | ssrdv | |- ( ( ( x e. On /\ A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) /\ z e. ( R1 ` x ) ) -> ( rank ` z ) C_ ( rank " ( TC ` z ) ) ) |
| 101 | 100 | ralrimiva | |- ( ( x e. On /\ A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) -> A. z e. ( R1 ` x ) ( rank ` z ) C_ ( rank " ( TC ` z ) ) ) |
| 102 | 101 | ex | |- ( x e. On -> ( A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) -> A. z e. ( R1 ` x ) ( rank ` z ) C_ ( rank " ( TC ` z ) ) ) ) |
| 103 | 10 12 102 | tfis3 | |- ( suc y e. On -> A. z e. ( R1 ` suc y ) ( rank ` z ) C_ ( rank " ( TC ` z ) ) ) |
| 104 | fveq2 | |- ( z = A -> ( rank ` z ) = ( rank ` A ) ) |
|
| 105 | fveq2 | |- ( z = A -> ( TC ` z ) = ( TC ` A ) ) |
|
| 106 | 105 | imaeq2d | |- ( z = A -> ( rank " ( TC ` z ) ) = ( rank " ( TC ` A ) ) ) |
| 107 | 104 106 | sseq12d | |- ( z = A -> ( ( rank ` z ) C_ ( rank " ( TC ` z ) ) <-> ( rank ` A ) C_ ( rank " ( TC ` A ) ) ) ) |
| 108 | 107 | rspccv | |- ( A. z e. ( R1 ` suc y ) ( rank ` z ) C_ ( rank " ( TC ` z ) ) -> ( A e. ( R1 ` suc y ) -> ( rank ` A ) C_ ( rank " ( TC ` A ) ) ) ) |
| 109 | 2 103 108 | 3syl | |- ( y e. On -> ( A e. ( R1 ` suc y ) -> ( rank ` A ) C_ ( rank " ( TC ` A ) ) ) ) |
| 110 | 109 | rexlimiv | |- ( E. y e. On A e. ( R1 ` suc y ) -> ( rank ` A ) C_ ( rank " ( TC ` A ) ) ) |
| 111 | 1 110 | sylbi | |- ( A e. U. ( R1 " On ) -> ( rank ` A ) C_ ( rank " ( TC ` A ) ) ) |
| 112 | tcvalg | |- ( A e. U. ( R1 " On ) -> ( TC ` A ) = |^| { x | ( A C_ x /\ Tr x ) } ) |
|
| 113 | r1rankidb | |- ( A e. U. ( R1 " On ) -> A C_ ( R1 ` ( rank ` A ) ) ) |
|
| 114 | r1tr | |- Tr ( R1 ` ( rank ` A ) ) |
|
| 115 | fvex | |- ( R1 ` ( rank ` A ) ) e. _V |
|
| 116 | sseq2 | |- ( x = ( R1 ` ( rank ` A ) ) -> ( A C_ x <-> A C_ ( R1 ` ( rank ` A ) ) ) ) |
|
| 117 | treq | |- ( x = ( R1 ` ( rank ` A ) ) -> ( Tr x <-> Tr ( R1 ` ( rank ` A ) ) ) ) |
|
| 118 | 116 117 | anbi12d | |- ( x = ( R1 ` ( rank ` A ) ) -> ( ( A C_ x /\ Tr x ) <-> ( A C_ ( R1 ` ( rank ` A ) ) /\ Tr ( R1 ` ( rank ` A ) ) ) ) ) |
| 119 | 115 118 | elab | |- ( ( R1 ` ( rank ` A ) ) e. { x | ( A C_ x /\ Tr x ) } <-> ( A C_ ( R1 ` ( rank ` A ) ) /\ Tr ( R1 ` ( rank ` A ) ) ) ) |
| 120 | intss1 | |- ( ( R1 ` ( rank ` A ) ) e. { x | ( A C_ x /\ Tr x ) } -> |^| { x | ( A C_ x /\ Tr x ) } C_ ( R1 ` ( rank ` A ) ) ) |
|
| 121 | 119 120 | sylbir | |- ( ( A C_ ( R1 ` ( rank ` A ) ) /\ Tr ( R1 ` ( rank ` A ) ) ) -> |^| { x | ( A C_ x /\ Tr x ) } C_ ( R1 ` ( rank ` A ) ) ) |
| 122 | 113 114 121 | sylancl | |- ( A e. U. ( R1 " On ) -> |^| { x | ( A C_ x /\ Tr x ) } C_ ( R1 ` ( rank ` A ) ) ) |
| 123 | 112 122 | eqsstrd | |- ( A e. U. ( R1 " On ) -> ( TC ` A ) C_ ( R1 ` ( rank ` A ) ) ) |
| 124 | imass2 | |- ( ( TC ` A ) C_ ( R1 ` ( rank ` A ) ) -> ( rank " ( TC ` A ) ) C_ ( rank " ( R1 ` ( rank ` A ) ) ) ) |
|
| 125 | ffun | |- ( rank : U. ( R1 " On ) --> On -> Fun rank ) |
|
| 126 | 55 125 | ax-mp | |- Fun rank |
| 127 | fvelima | |- ( ( Fun rank /\ x e. ( rank " ( R1 ` ( rank ` A ) ) ) ) -> E. y e. ( R1 ` ( rank ` A ) ) ( rank ` y ) = x ) |
|
| 128 | 126 127 | mpan | |- ( x e. ( rank " ( R1 ` ( rank ` A ) ) ) -> E. y e. ( R1 ` ( rank ` A ) ) ( rank ` y ) = x ) |
| 129 | rankr1ai | |- ( y e. ( R1 ` ( rank ` A ) ) -> ( rank ` y ) e. ( rank ` A ) ) |
|
| 130 | eleq1 | |- ( ( rank ` y ) = x -> ( ( rank ` y ) e. ( rank ` A ) <-> x e. ( rank ` A ) ) ) |
|
| 131 | 129 130 | syl5ibcom | |- ( y e. ( R1 ` ( rank ` A ) ) -> ( ( rank ` y ) = x -> x e. ( rank ` A ) ) ) |
| 132 | 131 | rexlimiv | |- ( E. y e. ( R1 ` ( rank ` A ) ) ( rank ` y ) = x -> x e. ( rank ` A ) ) |
| 133 | 128 132 | syl | |- ( x e. ( rank " ( R1 ` ( rank ` A ) ) ) -> x e. ( rank ` A ) ) |
| 134 | 133 | ssriv | |- ( rank " ( R1 ` ( rank ` A ) ) ) C_ ( rank ` A ) |
| 135 | 124 134 | sstrdi | |- ( ( TC ` A ) C_ ( R1 ` ( rank ` A ) ) -> ( rank " ( TC ` A ) ) C_ ( rank ` A ) ) |
| 136 | 123 135 | syl | |- ( A e. U. ( R1 " On ) -> ( rank " ( TC ` A ) ) C_ ( rank ` A ) ) |
| 137 | 111 136 | eqssd | |- ( A e. U. ( R1 " On ) -> ( rank ` A ) = ( rank " ( TC ` A ) ) ) |