This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function value in an image. (Contributed by NM, 20-Jan-2007) (Proof shortened by Andrew Salmon, 22-Oct-2011) (Revised by David Abernethy, 17-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvelimab | |- ( ( F Fn A /\ B C_ A ) -> ( C e. ( F " B ) <-> E. x e. B ( F ` x ) = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( C e. ( F " B ) -> C e. _V ) |
|
| 2 | 1 | anim2i | |- ( ( ( F Fn A /\ B C_ A ) /\ C e. ( F " B ) ) -> ( ( F Fn A /\ B C_ A ) /\ C e. _V ) ) |
| 3 | fvex | |- ( F ` x ) e. _V |
|
| 4 | eleq1 | |- ( ( F ` x ) = C -> ( ( F ` x ) e. _V <-> C e. _V ) ) |
|
| 5 | 3 4 | mpbii | |- ( ( F ` x ) = C -> C e. _V ) |
| 6 | 5 | rexlimivw | |- ( E. x e. B ( F ` x ) = C -> C e. _V ) |
| 7 | 6 | anim2i | |- ( ( ( F Fn A /\ B C_ A ) /\ E. x e. B ( F ` x ) = C ) -> ( ( F Fn A /\ B C_ A ) /\ C e. _V ) ) |
| 8 | eleq1 | |- ( y = C -> ( y e. ( F " B ) <-> C e. ( F " B ) ) ) |
|
| 9 | eqeq2 | |- ( y = C -> ( ( F ` x ) = y <-> ( F ` x ) = C ) ) |
|
| 10 | 9 | rexbidv | |- ( y = C -> ( E. x e. B ( F ` x ) = y <-> E. x e. B ( F ` x ) = C ) ) |
| 11 | 8 10 | bibi12d | |- ( y = C -> ( ( y e. ( F " B ) <-> E. x e. B ( F ` x ) = y ) <-> ( C e. ( F " B ) <-> E. x e. B ( F ` x ) = C ) ) ) |
| 12 | 11 | imbi2d | |- ( y = C -> ( ( ( F Fn A /\ B C_ A ) -> ( y e. ( F " B ) <-> E. x e. B ( F ` x ) = y ) ) <-> ( ( F Fn A /\ B C_ A ) -> ( C e. ( F " B ) <-> E. x e. B ( F ` x ) = C ) ) ) ) |
| 13 | fnfun | |- ( F Fn A -> Fun F ) |
|
| 14 | fndm | |- ( F Fn A -> dom F = A ) |
|
| 15 | 14 | sseq2d | |- ( F Fn A -> ( B C_ dom F <-> B C_ A ) ) |
| 16 | 15 | biimpar | |- ( ( F Fn A /\ B C_ A ) -> B C_ dom F ) |
| 17 | dfimafn | |- ( ( Fun F /\ B C_ dom F ) -> ( F " B ) = { y | E. x e. B ( F ` x ) = y } ) |
|
| 18 | 13 16 17 | syl2an2r | |- ( ( F Fn A /\ B C_ A ) -> ( F " B ) = { y | E. x e. B ( F ` x ) = y } ) |
| 19 | 18 | eqabrd | |- ( ( F Fn A /\ B C_ A ) -> ( y e. ( F " B ) <-> E. x e. B ( F ` x ) = y ) ) |
| 20 | 12 19 | vtoclg | |- ( C e. _V -> ( ( F Fn A /\ B C_ A ) -> ( C e. ( F " B ) <-> E. x e. B ( F ` x ) = C ) ) ) |
| 21 | 20 | impcom | |- ( ( ( F Fn A /\ B C_ A ) /\ C e. _V ) -> ( C e. ( F " B ) <-> E. x e. B ( F ` x ) = C ) ) |
| 22 | 2 7 21 | pm5.21nd | |- ( ( F Fn A /\ B C_ A ) -> ( C e. ( F " B ) <-> E. x e. B ( F ` x ) = C ) ) |