This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The transitive closure function is well-founded if its argument is. (Contributed by Mario Carneiro, 23-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tcwf | |- ( A e. U. ( R1 " On ) -> ( TC ` A ) e. U. ( R1 " On ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1elssi | |- ( A e. U. ( R1 " On ) -> A C_ U. ( R1 " On ) ) |
|
| 2 | dftr3 | |- ( Tr U. ( R1 " On ) <-> A. x e. U. ( R1 " On ) x C_ U. ( R1 " On ) ) |
|
| 3 | r1elssi | |- ( x e. U. ( R1 " On ) -> x C_ U. ( R1 " On ) ) |
|
| 4 | 2 3 | mprgbir | |- Tr U. ( R1 " On ) |
| 5 | tcmin | |- ( A e. U. ( R1 " On ) -> ( ( A C_ U. ( R1 " On ) /\ Tr U. ( R1 " On ) ) -> ( TC ` A ) C_ U. ( R1 " On ) ) ) |
|
| 6 | 4 5 | mpan2i | |- ( A e. U. ( R1 " On ) -> ( A C_ U. ( R1 " On ) -> ( TC ` A ) C_ U. ( R1 " On ) ) ) |
| 7 | 1 6 | mpd | |- ( A e. U. ( R1 " On ) -> ( TC ` A ) C_ U. ( R1 " On ) ) |
| 8 | fvex | |- ( TC ` A ) e. _V |
|
| 9 | 8 | r1elss | |- ( ( TC ` A ) e. U. ( R1 " On ) <-> ( TC ` A ) C_ U. ( R1 " On ) ) |
| 10 | 7 9 | sylibr | |- ( A e. U. ( R1 " On ) -> ( TC ` A ) e. U. ( R1 " On ) ) |