This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cumulative hierarchy of sets is transitive. Lemma 7T of Enderton p. 202. (Contributed by NM, 8-Sep-2003) (Revised by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1tr | |- Tr ( R1 ` A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1funlim | |- ( Fun R1 /\ Lim dom R1 ) |
|
| 2 | 1 | simpri | |- Lim dom R1 |
| 3 | limord | |- ( Lim dom R1 -> Ord dom R1 ) |
|
| 4 | ordsson | |- ( Ord dom R1 -> dom R1 C_ On ) |
|
| 5 | 2 3 4 | mp2b | |- dom R1 C_ On |
| 6 | 5 | sseli | |- ( A e. dom R1 -> A e. On ) |
| 7 | fveq2 | |- ( x = (/) -> ( R1 ` x ) = ( R1 ` (/) ) ) |
|
| 8 | r10 | |- ( R1 ` (/) ) = (/) |
|
| 9 | 7 8 | eqtrdi | |- ( x = (/) -> ( R1 ` x ) = (/) ) |
| 10 | treq | |- ( ( R1 ` x ) = (/) -> ( Tr ( R1 ` x ) <-> Tr (/) ) ) |
|
| 11 | 9 10 | syl | |- ( x = (/) -> ( Tr ( R1 ` x ) <-> Tr (/) ) ) |
| 12 | fveq2 | |- ( x = y -> ( R1 ` x ) = ( R1 ` y ) ) |
|
| 13 | treq | |- ( ( R1 ` x ) = ( R1 ` y ) -> ( Tr ( R1 ` x ) <-> Tr ( R1 ` y ) ) ) |
|
| 14 | 12 13 | syl | |- ( x = y -> ( Tr ( R1 ` x ) <-> Tr ( R1 ` y ) ) ) |
| 15 | fveq2 | |- ( x = suc y -> ( R1 ` x ) = ( R1 ` suc y ) ) |
|
| 16 | treq | |- ( ( R1 ` x ) = ( R1 ` suc y ) -> ( Tr ( R1 ` x ) <-> Tr ( R1 ` suc y ) ) ) |
|
| 17 | 15 16 | syl | |- ( x = suc y -> ( Tr ( R1 ` x ) <-> Tr ( R1 ` suc y ) ) ) |
| 18 | fveq2 | |- ( x = A -> ( R1 ` x ) = ( R1 ` A ) ) |
|
| 19 | treq | |- ( ( R1 ` x ) = ( R1 ` A ) -> ( Tr ( R1 ` x ) <-> Tr ( R1 ` A ) ) ) |
|
| 20 | 18 19 | syl | |- ( x = A -> ( Tr ( R1 ` x ) <-> Tr ( R1 ` A ) ) ) |
| 21 | tr0 | |- Tr (/) |
|
| 22 | limsuc | |- ( Lim dom R1 -> ( y e. dom R1 <-> suc y e. dom R1 ) ) |
|
| 23 | 2 22 | ax-mp | |- ( y e. dom R1 <-> suc y e. dom R1 ) |
| 24 | simpr | |- ( ( y e. On /\ Tr ( R1 ` y ) ) -> Tr ( R1 ` y ) ) |
|
| 25 | pwtr | |- ( Tr ( R1 ` y ) <-> Tr ~P ( R1 ` y ) ) |
|
| 26 | 24 25 | sylib | |- ( ( y e. On /\ Tr ( R1 ` y ) ) -> Tr ~P ( R1 ` y ) ) |
| 27 | r1sucg | |- ( y e. dom R1 -> ( R1 ` suc y ) = ~P ( R1 ` y ) ) |
|
| 28 | treq | |- ( ( R1 ` suc y ) = ~P ( R1 ` y ) -> ( Tr ( R1 ` suc y ) <-> Tr ~P ( R1 ` y ) ) ) |
|
| 29 | 27 28 | syl | |- ( y e. dom R1 -> ( Tr ( R1 ` suc y ) <-> Tr ~P ( R1 ` y ) ) ) |
| 30 | 26 29 | syl5ibrcom | |- ( ( y e. On /\ Tr ( R1 ` y ) ) -> ( y e. dom R1 -> Tr ( R1 ` suc y ) ) ) |
| 31 | 23 30 | biimtrrid | |- ( ( y e. On /\ Tr ( R1 ` y ) ) -> ( suc y e. dom R1 -> Tr ( R1 ` suc y ) ) ) |
| 32 | ndmfv | |- ( -. suc y e. dom R1 -> ( R1 ` suc y ) = (/) ) |
|
| 33 | treq | |- ( ( R1 ` suc y ) = (/) -> ( Tr ( R1 ` suc y ) <-> Tr (/) ) ) |
|
| 34 | 32 33 | syl | |- ( -. suc y e. dom R1 -> ( Tr ( R1 ` suc y ) <-> Tr (/) ) ) |
| 35 | 21 34 | mpbiri | |- ( -. suc y e. dom R1 -> Tr ( R1 ` suc y ) ) |
| 36 | 31 35 | pm2.61d1 | |- ( ( y e. On /\ Tr ( R1 ` y ) ) -> Tr ( R1 ` suc y ) ) |
| 37 | 36 | ex | |- ( y e. On -> ( Tr ( R1 ` y ) -> Tr ( R1 ` suc y ) ) ) |
| 38 | triun | |- ( A. y e. x Tr ( R1 ` y ) -> Tr U_ y e. x ( R1 ` y ) ) |
|
| 39 | r1limg | |- ( ( x e. dom R1 /\ Lim x ) -> ( R1 ` x ) = U_ y e. x ( R1 ` y ) ) |
|
| 40 | 39 | ancoms | |- ( ( Lim x /\ x e. dom R1 ) -> ( R1 ` x ) = U_ y e. x ( R1 ` y ) ) |
| 41 | treq | |- ( ( R1 ` x ) = U_ y e. x ( R1 ` y ) -> ( Tr ( R1 ` x ) <-> Tr U_ y e. x ( R1 ` y ) ) ) |
|
| 42 | 40 41 | syl | |- ( ( Lim x /\ x e. dom R1 ) -> ( Tr ( R1 ` x ) <-> Tr U_ y e. x ( R1 ` y ) ) ) |
| 43 | 38 42 | imbitrrid | |- ( ( Lim x /\ x e. dom R1 ) -> ( A. y e. x Tr ( R1 ` y ) -> Tr ( R1 ` x ) ) ) |
| 44 | 43 | impancom | |- ( ( Lim x /\ A. y e. x Tr ( R1 ` y ) ) -> ( x e. dom R1 -> Tr ( R1 ` x ) ) ) |
| 45 | ndmfv | |- ( -. x e. dom R1 -> ( R1 ` x ) = (/) ) |
|
| 46 | 45 10 | syl | |- ( -. x e. dom R1 -> ( Tr ( R1 ` x ) <-> Tr (/) ) ) |
| 47 | 21 46 | mpbiri | |- ( -. x e. dom R1 -> Tr ( R1 ` x ) ) |
| 48 | 44 47 | pm2.61d1 | |- ( ( Lim x /\ A. y e. x Tr ( R1 ` y ) ) -> Tr ( R1 ` x ) ) |
| 49 | 48 | ex | |- ( Lim x -> ( A. y e. x Tr ( R1 ` y ) -> Tr ( R1 ` x ) ) ) |
| 50 | 11 14 17 20 21 37 49 | tfinds | |- ( A e. On -> Tr ( R1 ` A ) ) |
| 51 | 6 50 | syl | |- ( A e. dom R1 -> Tr ( R1 ` A ) ) |
| 52 | ndmfv | |- ( -. A e. dom R1 -> ( R1 ` A ) = (/) ) |
|
| 53 | treq | |- ( ( R1 ` A ) = (/) -> ( Tr ( R1 ` A ) <-> Tr (/) ) ) |
|
| 54 | 52 53 | syl | |- ( -. A e. dom R1 -> ( Tr ( R1 ` A ) <-> Tr (/) ) ) |
| 55 | 21 54 | mpbiri | |- ( -. A e. dom R1 -> Tr ( R1 ` A ) ) |
| 56 | 51 55 | pm2.61i | |- Tr ( R1 ` A ) |