This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal number smaller than the minimum of a set of ordinal numbers does not have the property determining that set. ps is the wff resulting from the substitution of A for x in wff ph . (Contributed by NM, 9-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | onnminsb.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| Assertion | onnminsb | |- ( A e. On -> ( A e. |^| { x e. On | ph } -> -. ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onnminsb.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 2 | 1 | elrab | |- ( A e. { x e. On | ph } <-> ( A e. On /\ ps ) ) |
| 3 | ssrab2 | |- { x e. On | ph } C_ On |
|
| 4 | onnmin | |- ( ( { x e. On | ph } C_ On /\ A e. { x e. On | ph } ) -> -. A e. |^| { x e. On | ph } ) |
|
| 5 | 3 4 | mpan | |- ( A e. { x e. On | ph } -> -. A e. |^| { x e. On | ph } ) |
| 6 | 2 5 | sylbir | |- ( ( A e. On /\ ps ) -> -. A e. |^| { x e. On | ph } ) |
| 7 | 6 | ex | |- ( A e. On -> ( ps -> -. A e. |^| { x e. On | ph } ) ) |
| 8 | 7 | con2d | |- ( A e. On -> ( A e. |^| { x e. On | ph } -> -. ps ) ) |