This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of the R1 function is transitive. Lemma 2.10 of Kunen p. 97. (Contributed by Mario Carneiro, 22-Mar-2013) (Revised by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | r1elss.1 | |- A e. _V |
|
| Assertion | r1elss | |- ( A e. U. ( R1 " On ) <-> A C_ U. ( R1 " On ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1elss.1 | |- A e. _V |
|
| 2 | r1elssi | |- ( A e. U. ( R1 " On ) -> A C_ U. ( R1 " On ) ) |
|
| 3 | 1 | tz9.12 | |- ( A. y e. A E. x e. On y e. ( R1 ` x ) -> E. x e. On A e. ( R1 ` x ) ) |
| 4 | dfss3 | |- ( A C_ U. ( R1 " On ) <-> A. y e. A y e. U. ( R1 " On ) ) |
|
| 5 | r1fnon | |- R1 Fn On |
|
| 6 | fnfun | |- ( R1 Fn On -> Fun R1 ) |
|
| 7 | funiunfv | |- ( Fun R1 -> U_ x e. On ( R1 ` x ) = U. ( R1 " On ) ) |
|
| 8 | 5 6 7 | mp2b | |- U_ x e. On ( R1 ` x ) = U. ( R1 " On ) |
| 9 | 8 | eleq2i | |- ( y e. U_ x e. On ( R1 ` x ) <-> y e. U. ( R1 " On ) ) |
| 10 | eliun | |- ( y e. U_ x e. On ( R1 ` x ) <-> E. x e. On y e. ( R1 ` x ) ) |
|
| 11 | 9 10 | bitr3i | |- ( y e. U. ( R1 " On ) <-> E. x e. On y e. ( R1 ` x ) ) |
| 12 | 11 | ralbii | |- ( A. y e. A y e. U. ( R1 " On ) <-> A. y e. A E. x e. On y e. ( R1 ` x ) ) |
| 13 | 4 12 | bitri | |- ( A C_ U. ( R1 " On ) <-> A. y e. A E. x e. On y e. ( R1 ` x ) ) |
| 14 | 8 | eleq2i | |- ( A e. U_ x e. On ( R1 ` x ) <-> A e. U. ( R1 " On ) ) |
| 15 | eliun | |- ( A e. U_ x e. On ( R1 ` x ) <-> E. x e. On A e. ( R1 ` x ) ) |
|
| 16 | 14 15 | bitr3i | |- ( A e. U. ( R1 " On ) <-> E. x e. On A e. ( R1 ` x ) ) |
| 17 | 3 13 16 | 3imtr4i | |- ( A C_ U. ( R1 " On ) -> A e. U. ( R1 " On ) ) |
| 18 | 2 17 | impbii | |- ( A e. U. ( R1 " On ) <-> A C_ U. ( R1 " On ) ) |