This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The transitive closure function converts the element relation to the subset relation. (Contributed by Mario Carneiro, 23-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tc2.1 | |- A e. _V |
|
| Assertion | tcel | |- ( B e. A -> ( TC ` B ) C_ ( TC ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tc2.1 | |- A e. _V |
|
| 2 | tcvalg | |- ( B e. A -> ( TC ` B ) = |^| { x | ( B C_ x /\ Tr x ) } ) |
|
| 3 | ssel | |- ( A C_ x -> ( B e. A -> B e. x ) ) |
|
| 4 | trss | |- ( Tr x -> ( B e. x -> B C_ x ) ) |
|
| 5 | 4 | com12 | |- ( B e. x -> ( Tr x -> B C_ x ) ) |
| 6 | 3 5 | syl6com | |- ( B e. A -> ( A C_ x -> ( Tr x -> B C_ x ) ) ) |
| 7 | 6 | impd | |- ( B e. A -> ( ( A C_ x /\ Tr x ) -> B C_ x ) ) |
| 8 | simpr | |- ( ( A C_ x /\ Tr x ) -> Tr x ) |
|
| 9 | 7 8 | jca2 | |- ( B e. A -> ( ( A C_ x /\ Tr x ) -> ( B C_ x /\ Tr x ) ) ) |
| 10 | 9 | ss2abdv | |- ( B e. A -> { x | ( A C_ x /\ Tr x ) } C_ { x | ( B C_ x /\ Tr x ) } ) |
| 11 | intss | |- ( { x | ( A C_ x /\ Tr x ) } C_ { x | ( B C_ x /\ Tr x ) } -> |^| { x | ( B C_ x /\ Tr x ) } C_ |^| { x | ( A C_ x /\ Tr x ) } ) |
|
| 12 | 10 11 | syl | |- ( B e. A -> |^| { x | ( B C_ x /\ Tr x ) } C_ |^| { x | ( A C_ x /\ Tr x ) } ) |
| 13 | tcvalg | |- ( A e. _V -> ( TC ` A ) = |^| { x | ( A C_ x /\ Tr x ) } ) |
|
| 14 | 1 13 | ax-mp | |- ( TC ` A ) = |^| { x | ( A C_ x /\ Tr x ) } |
| 15 | 12 14 | sseqtrrdi | |- ( B e. A -> |^| { x | ( B C_ x /\ Tr x ) } C_ ( TC ` A ) ) |
| 16 | 2 15 | eqsstrd | |- ( B e. A -> ( TC ` B ) C_ ( TC ` A ) ) |