This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the transitive closure function. (The fact that this intersection exists is a non-trivial fact that depends on ax-inf ; see tz9.1 .) (Contributed by Mario Carneiro, 23-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tcvalg | |- ( A e. V -> ( TC ` A ) = |^| { x | ( A C_ x /\ Tr x ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( y = A -> ( TC ` y ) = ( TC ` A ) ) |
|
| 2 | sseq1 | |- ( y = A -> ( y C_ x <-> A C_ x ) ) |
|
| 3 | 2 | anbi1d | |- ( y = A -> ( ( y C_ x /\ Tr x ) <-> ( A C_ x /\ Tr x ) ) ) |
| 4 | 3 | abbidv | |- ( y = A -> { x | ( y C_ x /\ Tr x ) } = { x | ( A C_ x /\ Tr x ) } ) |
| 5 | 4 | inteqd | |- ( y = A -> |^| { x | ( y C_ x /\ Tr x ) } = |^| { x | ( A C_ x /\ Tr x ) } ) |
| 6 | 1 5 | eqeq12d | |- ( y = A -> ( ( TC ` y ) = |^| { x | ( y C_ x /\ Tr x ) } <-> ( TC ` A ) = |^| { x | ( A C_ x /\ Tr x ) } ) ) |
| 7 | vex | |- y e. _V |
|
| 8 | 7 | tz9.1c | |- |^| { x | ( y C_ x /\ Tr x ) } e. _V |
| 9 | df-tc | |- TC = ( y e. _V |-> |^| { x | ( y C_ x /\ Tr x ) } ) |
|
| 10 | 9 | fvmpt2 | |- ( ( y e. _V /\ |^| { x | ( y C_ x /\ Tr x ) } e. _V ) -> ( TC ` y ) = |^| { x | ( y C_ x /\ Tr x ) } ) |
| 11 | 7 8 10 | mp2an | |- ( TC ` y ) = |^| { x | ( y C_ x /\ Tr x ) } |
| 12 | 6 11 | vtoclg | |- ( A e. V -> ( TC ` A ) = |^| { x | ( A C_ x /\ Tr x ) } ) |