This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any member of the cumulative hierarchy is well-founded. (Contributed by Mario Carneiro, 28-May-2013) (Revised by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1elwf | |- ( A e. ( R1 ` B ) -> A e. U. ( R1 " On ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1funlim | |- ( Fun R1 /\ Lim dom R1 ) |
|
| 2 | 1 | simpri | |- Lim dom R1 |
| 3 | limord | |- ( Lim dom R1 -> Ord dom R1 ) |
|
| 4 | ordsson | |- ( Ord dom R1 -> dom R1 C_ On ) |
|
| 5 | 2 3 4 | mp2b | |- dom R1 C_ On |
| 6 | elfvdm | |- ( A e. ( R1 ` B ) -> B e. dom R1 ) |
|
| 7 | 5 6 | sselid | |- ( A e. ( R1 ` B ) -> B e. On ) |
| 8 | r1tr | |- Tr ( R1 ` B ) |
|
| 9 | trss | |- ( Tr ( R1 ` B ) -> ( A e. ( R1 ` B ) -> A C_ ( R1 ` B ) ) ) |
|
| 10 | 8 9 | ax-mp | |- ( A e. ( R1 ` B ) -> A C_ ( R1 ` B ) ) |
| 11 | elpwg | |- ( A e. ( R1 ` B ) -> ( A e. ~P ( R1 ` B ) <-> A C_ ( R1 ` B ) ) ) |
|
| 12 | 10 11 | mpbird | |- ( A e. ( R1 ` B ) -> A e. ~P ( R1 ` B ) ) |
| 13 | r1sucg | |- ( B e. dom R1 -> ( R1 ` suc B ) = ~P ( R1 ` B ) ) |
|
| 14 | 6 13 | syl | |- ( A e. ( R1 ` B ) -> ( R1 ` suc B ) = ~P ( R1 ` B ) ) |
| 15 | 12 14 | eleqtrrd | |- ( A e. ( R1 ` B ) -> A e. ( R1 ` suc B ) ) |
| 16 | suceq | |- ( x = B -> suc x = suc B ) |
|
| 17 | 16 | fveq2d | |- ( x = B -> ( R1 ` suc x ) = ( R1 ` suc B ) ) |
| 18 | 17 | eleq2d | |- ( x = B -> ( A e. ( R1 ` suc x ) <-> A e. ( R1 ` suc B ) ) ) |
| 19 | 18 | rspcev | |- ( ( B e. On /\ A e. ( R1 ` suc B ) ) -> E. x e. On A e. ( R1 ` suc x ) ) |
| 20 | 7 15 19 | syl2anc | |- ( A e. ( R1 ` B ) -> E. x e. On A e. ( R1 ` suc x ) ) |
| 21 | rankwflemb | |- ( A e. U. ( R1 " On ) <-> E. x e. On A e. ( R1 ` suc x ) ) |
|
| 22 | 20 21 | sylibr | |- ( A e. ( R1 ` B ) -> A e. U. ( R1 " On ) ) |