This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: This theorem expresses two different facts from the two subset implications in this equality. In the forward direction, it says that the transitive closure has members of every rank below A . Stated another way, to construct a set at a given rank, you have to climb the entire hierarchy of ordinals below ( rankA ) , constructing at least one set at each level in order to move up the ranks. In the reverse direction, it says that every member of ( TCA ) has a rank below the rank of A , since intuitively it contains only the members of A and the members of those and so on, but nothing "bigger" than A . (Contributed by Mario Carneiro, 23-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tcrank | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) = ( rank “ ( TC ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankwflemb | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ ∃ 𝑦 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑦 ) ) | |
| 2 | onsuc | ⊢ ( 𝑦 ∈ On → suc 𝑦 ∈ On ) | |
| 3 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) ) | |
| 4 | 3 | raleqdv | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ( rank ‘ 𝑧 ) ⊆ ( rank “ ( TC ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑧 ) ⊆ ( rank “ ( TC ‘ 𝑧 ) ) ) ) |
| 5 | fveq2 | ⊢ ( 𝑧 = 𝑢 → ( rank ‘ 𝑧 ) = ( rank ‘ 𝑢 ) ) | |
| 6 | fveq2 | ⊢ ( 𝑧 = 𝑢 → ( TC ‘ 𝑧 ) = ( TC ‘ 𝑢 ) ) | |
| 7 | 6 | imaeq2d | ⊢ ( 𝑧 = 𝑢 → ( rank “ ( TC ‘ 𝑧 ) ) = ( rank “ ( TC ‘ 𝑢 ) ) ) |
| 8 | 5 7 | sseq12d | ⊢ ( 𝑧 = 𝑢 → ( ( rank ‘ 𝑧 ) ⊆ ( rank “ ( TC ‘ 𝑧 ) ) ↔ ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ) |
| 9 | 8 | cbvralvw | ⊢ ( ∀ 𝑧 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑧 ) ⊆ ( rank “ ( TC ‘ 𝑧 ) ) ↔ ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) |
| 10 | 4 9 | bitrdi | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ( rank ‘ 𝑧 ) ⊆ ( rank “ ( TC ‘ 𝑧 ) ) ↔ ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ) |
| 11 | fveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ suc 𝑦 ) ) | |
| 12 | 11 | raleqdv | ⊢ ( 𝑥 = suc 𝑦 → ( ∀ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ( rank ‘ 𝑧 ) ⊆ ( rank “ ( TC ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ ( 𝑅1 ‘ suc 𝑦 ) ( rank ‘ 𝑧 ) ⊆ ( rank “ ( TC ‘ 𝑧 ) ) ) ) |
| 13 | simpr | ⊢ ( ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ∧ ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ) → ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ) | |
| 14 | simprl | ⊢ ( ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ∧ ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ) → 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) | |
| 15 | simplr | ⊢ ( ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ∧ ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ) → ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) | |
| 16 | rankr1ai | ⊢ ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) → ( rank ‘ 𝑧 ) ∈ 𝑥 ) | |
| 17 | fveq2 | ⊢ ( 𝑦 = ( rank ‘ 𝑧 ) → ( 𝑅1 ‘ 𝑦 ) = ( 𝑅1 ‘ ( rank ‘ 𝑧 ) ) ) | |
| 18 | 17 | raleqdv | ⊢ ( 𝑦 = ( rank ‘ 𝑧 ) → ( ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ↔ ∀ 𝑢 ∈ ( 𝑅1 ‘ ( rank ‘ 𝑧 ) ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ) |
| 19 | 18 | rspcv | ⊢ ( ( rank ‘ 𝑧 ) ∈ 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) → ∀ 𝑢 ∈ ( 𝑅1 ‘ ( rank ‘ 𝑧 ) ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ) |
| 20 | 16 19 | syl | ⊢ ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) → ∀ 𝑢 ∈ ( 𝑅1 ‘ ( rank ‘ 𝑧 ) ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ) |
| 21 | r1elwf | ⊢ ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) → 𝑧 ∈ ∪ ( 𝑅1 “ On ) ) | |
| 22 | r1rankidb | ⊢ ( 𝑧 ∈ ∪ ( 𝑅1 “ On ) → 𝑧 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝑧 ) ) ) | |
| 23 | ssralv | ⊢ ( 𝑧 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝑧 ) ) → ( ∀ 𝑢 ∈ ( 𝑅1 ‘ ( rank ‘ 𝑧 ) ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) → ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ) | |
| 24 | 21 22 23 | 3syl | ⊢ ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) → ( ∀ 𝑢 ∈ ( 𝑅1 ‘ ( rank ‘ 𝑧 ) ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) → ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ) |
| 25 | 20 24 | syld | ⊢ ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) → ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ) |
| 26 | 14 15 25 | sylc | ⊢ ( ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ∧ ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ) → ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) |
| 27 | rankval3b | ⊢ ( 𝑧 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝑧 ) = ∩ { 𝑥 ∈ On ∣ ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ∈ 𝑥 } ) | |
| 28 | 27 | eleq2d | ⊢ ( 𝑧 ∈ ∪ ( 𝑅1 “ On ) → ( 𝑤 ∈ ( rank ‘ 𝑧 ) ↔ 𝑤 ∈ ∩ { 𝑥 ∈ On ∣ ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ∈ 𝑥 } ) ) |
| 29 | 28 | biimpd | ⊢ ( 𝑧 ∈ ∪ ( 𝑅1 “ On ) → ( 𝑤 ∈ ( rank ‘ 𝑧 ) → 𝑤 ∈ ∩ { 𝑥 ∈ On ∣ ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ∈ 𝑥 } ) ) |
| 30 | rankon | ⊢ ( rank ‘ 𝑧 ) ∈ On | |
| 31 | 30 | oneli | ⊢ ( 𝑤 ∈ ( rank ‘ 𝑧 ) → 𝑤 ∈ On ) |
| 32 | eleq2w | ⊢ ( 𝑥 = 𝑤 → ( ( rank ‘ 𝑢 ) ∈ 𝑥 ↔ ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) | |
| 33 | 32 | ralbidv | ⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ∈ 𝑥 ↔ ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) |
| 34 | 33 | onnminsb | ⊢ ( 𝑤 ∈ On → ( 𝑤 ∈ ∩ { 𝑥 ∈ On ∣ ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ∈ 𝑥 } → ¬ ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) |
| 35 | 31 34 | syl | ⊢ ( 𝑤 ∈ ( rank ‘ 𝑧 ) → ( 𝑤 ∈ ∩ { 𝑥 ∈ On ∣ ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ∈ 𝑥 } → ¬ ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) |
| 36 | 29 35 | sylcom | ⊢ ( 𝑧 ∈ ∪ ( 𝑅1 “ On ) → ( 𝑤 ∈ ( rank ‘ 𝑧 ) → ¬ ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) |
| 37 | 21 36 | syl | ⊢ ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) → ( 𝑤 ∈ ( rank ‘ 𝑧 ) → ¬ ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) |
| 38 | 37 | imp | ⊢ ( ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) → ¬ ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ∈ 𝑤 ) |
| 39 | rexnal | ⊢ ( ∃ 𝑢 ∈ 𝑧 ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ↔ ¬ ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ∈ 𝑤 ) | |
| 40 | 38 39 | sylibr | ⊢ ( ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) → ∃ 𝑢 ∈ 𝑧 ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) |
| 41 | 40 | adantl | ⊢ ( ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ∧ ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ) → ∃ 𝑢 ∈ 𝑧 ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) |
| 42 | r19.29 | ⊢ ( ( ∀ 𝑢 ∈ 𝑧 ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ∧ ∃ 𝑢 ∈ 𝑧 ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) → ∃ 𝑢 ∈ 𝑧 ( ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ∧ ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) | |
| 43 | 26 41 42 | syl2anc | ⊢ ( ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ∧ ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ) → ∃ 𝑢 ∈ 𝑧 ( ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ∧ ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) |
| 44 | simp2 | ⊢ ( ( ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ∧ 𝑢 ∈ 𝑧 ∧ ( ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ∧ ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) → 𝑢 ∈ 𝑧 ) | |
| 45 | tcid | ⊢ ( 𝑧 ∈ V → 𝑧 ⊆ ( TC ‘ 𝑧 ) ) | |
| 46 | 45 | elv | ⊢ 𝑧 ⊆ ( TC ‘ 𝑧 ) |
| 47 | 46 | sseli | ⊢ ( 𝑢 ∈ 𝑧 → 𝑢 ∈ ( TC ‘ 𝑧 ) ) |
| 48 | fveqeq2 | ⊢ ( 𝑥 = 𝑢 → ( ( rank ‘ 𝑥 ) = 𝑤 ↔ ( rank ‘ 𝑢 ) = 𝑤 ) ) | |
| 49 | 48 | rspcev | ⊢ ( ( 𝑢 ∈ ( TC ‘ 𝑧 ) ∧ ( rank ‘ 𝑢 ) = 𝑤 ) → ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) |
| 50 | 49 | ex | ⊢ ( 𝑢 ∈ ( TC ‘ 𝑧 ) → ( ( rank ‘ 𝑢 ) = 𝑤 → ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) |
| 51 | 44 47 50 | 3syl | ⊢ ( ( ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ∧ 𝑢 ∈ 𝑧 ∧ ( ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ∧ ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) → ( ( rank ‘ 𝑢 ) = 𝑤 → ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) |
| 52 | simp3l | ⊢ ( ( ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ∧ 𝑢 ∈ 𝑧 ∧ ( ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ∧ ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) → ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) | |
| 53 | 52 | sseld | ⊢ ( ( ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ∧ 𝑢 ∈ 𝑧 ∧ ( ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ∧ ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) → ( 𝑤 ∈ ( rank ‘ 𝑢 ) → 𝑤 ∈ ( rank “ ( TC ‘ 𝑢 ) ) ) ) |
| 54 | simp1l | ⊢ ( ( ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ∧ 𝑢 ∈ 𝑧 ∧ ( ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ∧ ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) → 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) | |
| 55 | rankf | ⊢ rank : ∪ ( 𝑅1 “ On ) ⟶ On | |
| 56 | ffn | ⊢ ( rank : ∪ ( 𝑅1 “ On ) ⟶ On → rank Fn ∪ ( 𝑅1 “ On ) ) | |
| 57 | 55 56 | ax-mp | ⊢ rank Fn ∪ ( 𝑅1 “ On ) |
| 58 | r1tr | ⊢ Tr ( 𝑅1 ‘ 𝑥 ) | |
| 59 | trel | ⊢ ( Tr ( 𝑅1 ‘ 𝑥 ) → ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) → 𝑢 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) | |
| 60 | 58 59 | ax-mp | ⊢ ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) → 𝑢 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
| 61 | r1elwf | ⊢ ( 𝑢 ∈ ( 𝑅1 ‘ 𝑥 ) → 𝑢 ∈ ∪ ( 𝑅1 “ On ) ) | |
| 62 | tcwf | ⊢ ( 𝑢 ∈ ∪ ( 𝑅1 “ On ) → ( TC ‘ 𝑢 ) ∈ ∪ ( 𝑅1 “ On ) ) | |
| 63 | fvex | ⊢ ( TC ‘ 𝑢 ) ∈ V | |
| 64 | 63 | r1elss | ⊢ ( ( TC ‘ 𝑢 ) ∈ ∪ ( 𝑅1 “ On ) ↔ ( TC ‘ 𝑢 ) ⊆ ∪ ( 𝑅1 “ On ) ) |
| 65 | 62 64 | sylib | ⊢ ( 𝑢 ∈ ∪ ( 𝑅1 “ On ) → ( TC ‘ 𝑢 ) ⊆ ∪ ( 𝑅1 “ On ) ) |
| 66 | 60 61 65 | 3syl | ⊢ ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) → ( TC ‘ 𝑢 ) ⊆ ∪ ( 𝑅1 “ On ) ) |
| 67 | fvelimab | ⊢ ( ( rank Fn ∪ ( 𝑅1 “ On ) ∧ ( TC ‘ 𝑢 ) ⊆ ∪ ( 𝑅1 “ On ) ) → ( 𝑤 ∈ ( rank “ ( TC ‘ 𝑢 ) ) ↔ ∃ 𝑥 ∈ ( TC ‘ 𝑢 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) | |
| 68 | 57 66 67 | sylancr | ⊢ ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) → ( 𝑤 ∈ ( rank “ ( TC ‘ 𝑢 ) ) ↔ ∃ 𝑥 ∈ ( TC ‘ 𝑢 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) |
| 69 | vex | ⊢ 𝑧 ∈ V | |
| 70 | 69 | tcel | ⊢ ( 𝑢 ∈ 𝑧 → ( TC ‘ 𝑢 ) ⊆ ( TC ‘ 𝑧 ) ) |
| 71 | ssrexv | ⊢ ( ( TC ‘ 𝑢 ) ⊆ ( TC ‘ 𝑧 ) → ( ∃ 𝑥 ∈ ( TC ‘ 𝑢 ) ( rank ‘ 𝑥 ) = 𝑤 → ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) | |
| 72 | 70 71 | syl | ⊢ ( 𝑢 ∈ 𝑧 → ( ∃ 𝑥 ∈ ( TC ‘ 𝑢 ) ( rank ‘ 𝑥 ) = 𝑤 → ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) |
| 73 | 72 | adantr | ⊢ ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) → ( ∃ 𝑥 ∈ ( TC ‘ 𝑢 ) ( rank ‘ 𝑥 ) = 𝑤 → ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) |
| 74 | 68 73 | sylbid | ⊢ ( ( 𝑢 ∈ 𝑧 ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) → ( 𝑤 ∈ ( rank “ ( TC ‘ 𝑢 ) ) → ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) |
| 75 | 44 54 74 | syl2anc | ⊢ ( ( ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ∧ 𝑢 ∈ 𝑧 ∧ ( ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ∧ ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) → ( 𝑤 ∈ ( rank “ ( TC ‘ 𝑢 ) ) → ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) |
| 76 | 53 75 | syld | ⊢ ( ( ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ∧ 𝑢 ∈ 𝑧 ∧ ( ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ∧ ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) → ( 𝑤 ∈ ( rank ‘ 𝑢 ) → ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) |
| 77 | rankon | ⊢ ( rank ‘ 𝑢 ) ∈ On | |
| 78 | eloni | ⊢ ( ( rank ‘ 𝑢 ) ∈ On → Ord ( rank ‘ 𝑢 ) ) | |
| 79 | eloni | ⊢ ( 𝑤 ∈ On → Ord 𝑤 ) | |
| 80 | ordtri3or | ⊢ ( ( Ord ( rank ‘ 𝑢 ) ∧ Ord 𝑤 ) → ( ( rank ‘ 𝑢 ) ∈ 𝑤 ∨ ( rank ‘ 𝑢 ) = 𝑤 ∨ 𝑤 ∈ ( rank ‘ 𝑢 ) ) ) | |
| 81 | 78 79 80 | syl2an | ⊢ ( ( ( rank ‘ 𝑢 ) ∈ On ∧ 𝑤 ∈ On ) → ( ( rank ‘ 𝑢 ) ∈ 𝑤 ∨ ( rank ‘ 𝑢 ) = 𝑤 ∨ 𝑤 ∈ ( rank ‘ 𝑢 ) ) ) |
| 82 | 77 31 81 | sylancr | ⊢ ( 𝑤 ∈ ( rank ‘ 𝑧 ) → ( ( rank ‘ 𝑢 ) ∈ 𝑤 ∨ ( rank ‘ 𝑢 ) = 𝑤 ∨ 𝑤 ∈ ( rank ‘ 𝑢 ) ) ) |
| 83 | 3orass | ⊢ ( ( ( rank ‘ 𝑢 ) ∈ 𝑤 ∨ ( rank ‘ 𝑢 ) = 𝑤 ∨ 𝑤 ∈ ( rank ‘ 𝑢 ) ) ↔ ( ( rank ‘ 𝑢 ) ∈ 𝑤 ∨ ( ( rank ‘ 𝑢 ) = 𝑤 ∨ 𝑤 ∈ ( rank ‘ 𝑢 ) ) ) ) | |
| 84 | 82 83 | sylib | ⊢ ( 𝑤 ∈ ( rank ‘ 𝑧 ) → ( ( rank ‘ 𝑢 ) ∈ 𝑤 ∨ ( ( rank ‘ 𝑢 ) = 𝑤 ∨ 𝑤 ∈ ( rank ‘ 𝑢 ) ) ) ) |
| 85 | 84 | orcanai | ⊢ ( ( 𝑤 ∈ ( rank ‘ 𝑧 ) ∧ ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) → ( ( rank ‘ 𝑢 ) = 𝑤 ∨ 𝑤 ∈ ( rank ‘ 𝑢 ) ) ) |
| 86 | 85 | ad2ant2l | ⊢ ( ( ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ∧ ( ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ∧ ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) → ( ( rank ‘ 𝑢 ) = 𝑤 ∨ 𝑤 ∈ ( rank ‘ 𝑢 ) ) ) |
| 87 | 86 | 3adant2 | ⊢ ( ( ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ∧ 𝑢 ∈ 𝑧 ∧ ( ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ∧ ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) → ( ( rank ‘ 𝑢 ) = 𝑤 ∨ 𝑤 ∈ ( rank ‘ 𝑢 ) ) ) |
| 88 | 51 76 87 | mpjaod | ⊢ ( ( ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ∧ 𝑢 ∈ 𝑧 ∧ ( ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ∧ ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) ) → ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) |
| 89 | 88 | rexlimdv3a | ⊢ ( ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) → ( ∃ 𝑢 ∈ 𝑧 ( ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ∧ ¬ ( rank ‘ 𝑢 ) ∈ 𝑤 ) → ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) |
| 90 | 13 43 89 | sylc | ⊢ ( ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ∧ ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ∧ 𝑤 ∈ ( rank ‘ 𝑧 ) ) ) → ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) |
| 91 | 90 | expr | ⊢ ( ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) → ( 𝑤 ∈ ( rank ‘ 𝑧 ) → ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) |
| 92 | tcwf | ⊢ ( 𝑧 ∈ ∪ ( 𝑅1 “ On ) → ( TC ‘ 𝑧 ) ∈ ∪ ( 𝑅1 “ On ) ) | |
| 93 | r1elssi | ⊢ ( ( TC ‘ 𝑧 ) ∈ ∪ ( 𝑅1 “ On ) → ( TC ‘ 𝑧 ) ⊆ ∪ ( 𝑅1 “ On ) ) | |
| 94 | fvelimab | ⊢ ( ( rank Fn ∪ ( 𝑅1 “ On ) ∧ ( TC ‘ 𝑧 ) ⊆ ∪ ( 𝑅1 “ On ) ) → ( 𝑤 ∈ ( rank “ ( TC ‘ 𝑧 ) ) ↔ ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) | |
| 95 | 93 94 | sylan2 | ⊢ ( ( rank Fn ∪ ( 𝑅1 “ On ) ∧ ( TC ‘ 𝑧 ) ∈ ∪ ( 𝑅1 “ On ) ) → ( 𝑤 ∈ ( rank “ ( TC ‘ 𝑧 ) ) ↔ ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) |
| 96 | 57 92 95 | sylancr | ⊢ ( 𝑧 ∈ ∪ ( 𝑅1 “ On ) → ( 𝑤 ∈ ( rank “ ( TC ‘ 𝑧 ) ) ↔ ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) |
| 97 | 21 96 | syl | ⊢ ( 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) → ( 𝑤 ∈ ( rank “ ( TC ‘ 𝑧 ) ) ↔ ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) |
| 98 | 97 | adantl | ⊢ ( ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) → ( 𝑤 ∈ ( rank “ ( TC ‘ 𝑧 ) ) ↔ ∃ 𝑥 ∈ ( TC ‘ 𝑧 ) ( rank ‘ 𝑥 ) = 𝑤 ) ) |
| 99 | 91 98 | sylibrd | ⊢ ( ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) → ( 𝑤 ∈ ( rank ‘ 𝑧 ) → 𝑤 ∈ ( rank “ ( TC ‘ 𝑧 ) ) ) ) |
| 100 | 99 | ssrdv | ⊢ ( ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) ∧ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) → ( rank ‘ 𝑧 ) ⊆ ( rank “ ( TC ‘ 𝑧 ) ) ) |
| 101 | 100 | ralrimiva | ⊢ ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) ) → ∀ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ( rank ‘ 𝑧 ) ⊆ ( rank “ ( TC ‘ 𝑧 ) ) ) |
| 102 | 101 | ex | ⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 ∀ 𝑢 ∈ ( 𝑅1 ‘ 𝑦 ) ( rank ‘ 𝑢 ) ⊆ ( rank “ ( TC ‘ 𝑢 ) ) → ∀ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ( rank ‘ 𝑧 ) ⊆ ( rank “ ( TC ‘ 𝑧 ) ) ) ) |
| 103 | 10 12 102 | tfis3 | ⊢ ( suc 𝑦 ∈ On → ∀ 𝑧 ∈ ( 𝑅1 ‘ suc 𝑦 ) ( rank ‘ 𝑧 ) ⊆ ( rank “ ( TC ‘ 𝑧 ) ) ) |
| 104 | fveq2 | ⊢ ( 𝑧 = 𝐴 → ( rank ‘ 𝑧 ) = ( rank ‘ 𝐴 ) ) | |
| 105 | fveq2 | ⊢ ( 𝑧 = 𝐴 → ( TC ‘ 𝑧 ) = ( TC ‘ 𝐴 ) ) | |
| 106 | 105 | imaeq2d | ⊢ ( 𝑧 = 𝐴 → ( rank “ ( TC ‘ 𝑧 ) ) = ( rank “ ( TC ‘ 𝐴 ) ) ) |
| 107 | 104 106 | sseq12d | ⊢ ( 𝑧 = 𝐴 → ( ( rank ‘ 𝑧 ) ⊆ ( rank “ ( TC ‘ 𝑧 ) ) ↔ ( rank ‘ 𝐴 ) ⊆ ( rank “ ( TC ‘ 𝐴 ) ) ) ) |
| 108 | 107 | rspccv | ⊢ ( ∀ 𝑧 ∈ ( 𝑅1 ‘ suc 𝑦 ) ( rank ‘ 𝑧 ) ⊆ ( rank “ ( TC ‘ 𝑧 ) ) → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝑦 ) → ( rank ‘ 𝐴 ) ⊆ ( rank “ ( TC ‘ 𝐴 ) ) ) ) |
| 109 | 2 103 108 | 3syl | ⊢ ( 𝑦 ∈ On → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝑦 ) → ( rank ‘ 𝐴 ) ⊆ ( rank “ ( TC ‘ 𝐴 ) ) ) ) |
| 110 | 109 | rexlimiv | ⊢ ( ∃ 𝑦 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑦 ) → ( rank ‘ 𝐴 ) ⊆ ( rank “ ( TC ‘ 𝐴 ) ) ) |
| 111 | 1 110 | sylbi | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) ⊆ ( rank “ ( TC ‘ 𝐴 ) ) ) |
| 112 | tcvalg | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( TC ‘ 𝐴 ) = ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) | |
| 113 | r1rankidb | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) | |
| 114 | r1tr | ⊢ Tr ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) | |
| 115 | fvex | ⊢ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∈ V | |
| 116 | sseq2 | ⊢ ( 𝑥 = ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) → ( 𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) | |
| 117 | treq | ⊢ ( 𝑥 = ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) → ( Tr 𝑥 ↔ Tr ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) | |
| 118 | 116 117 | anbi12d | ⊢ ( 𝑥 = ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) → ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) ↔ ( 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∧ Tr ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) ) |
| 119 | 115 118 | elab | ⊢ ( ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∈ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ↔ ( 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∧ Tr ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) |
| 120 | intss1 | ⊢ ( ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∈ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } → ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) | |
| 121 | 119 120 | sylbir | ⊢ ( ( 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∧ Tr ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) → ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
| 122 | 113 114 121 | sylancl | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
| 123 | 112 122 | eqsstrd | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( TC ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
| 124 | imass2 | ⊢ ( ( TC ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) → ( rank “ ( TC ‘ 𝐴 ) ) ⊆ ( rank “ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) | |
| 125 | ffun | ⊢ ( rank : ∪ ( 𝑅1 “ On ) ⟶ On → Fun rank ) | |
| 126 | 55 125 | ax-mp | ⊢ Fun rank |
| 127 | fvelima | ⊢ ( ( Fun rank ∧ 𝑥 ∈ ( rank “ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) → ∃ 𝑦 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ( rank ‘ 𝑦 ) = 𝑥 ) | |
| 128 | 126 127 | mpan | ⊢ ( 𝑥 ∈ ( rank “ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) → ∃ 𝑦 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ( rank ‘ 𝑦 ) = 𝑥 ) |
| 129 | rankr1ai | ⊢ ( 𝑦 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) → ( rank ‘ 𝑦 ) ∈ ( rank ‘ 𝐴 ) ) | |
| 130 | eleq1 | ⊢ ( ( rank ‘ 𝑦 ) = 𝑥 → ( ( rank ‘ 𝑦 ) ∈ ( rank ‘ 𝐴 ) ↔ 𝑥 ∈ ( rank ‘ 𝐴 ) ) ) | |
| 131 | 129 130 | syl5ibcom | ⊢ ( 𝑦 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) → ( ( rank ‘ 𝑦 ) = 𝑥 → 𝑥 ∈ ( rank ‘ 𝐴 ) ) ) |
| 132 | 131 | rexlimiv | ⊢ ( ∃ 𝑦 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ( rank ‘ 𝑦 ) = 𝑥 → 𝑥 ∈ ( rank ‘ 𝐴 ) ) |
| 133 | 128 132 | syl | ⊢ ( 𝑥 ∈ ( rank “ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) → 𝑥 ∈ ( rank ‘ 𝐴 ) ) |
| 134 | 133 | ssriv | ⊢ ( rank “ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ⊆ ( rank ‘ 𝐴 ) |
| 135 | 124 134 | sstrdi | ⊢ ( ( TC ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) → ( rank “ ( TC ‘ 𝐴 ) ) ⊆ ( rank ‘ 𝐴 ) ) |
| 136 | 123 135 | syl | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank “ ( TC ‘ 𝐴 ) ) ⊆ ( rank ‘ 𝐴 ) ) |
| 137 | 111 136 | eqssd | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) = ( rank “ ( TC ‘ 𝐴 ) ) ) |