This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a set is well-founded. (Contributed by NM, 11-Oct-2003) (Revised by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankwflemb | |- ( A e. U. ( R1 " On ) <-> E. x e. On A e. ( R1 ` suc x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni | |- ( A e. U. ( R1 " On ) <-> E. y ( A e. y /\ y e. ( R1 " On ) ) ) |
|
| 2 | eleq2 | |- ( ( R1 ` x ) = y -> ( A e. ( R1 ` x ) <-> A e. y ) ) |
|
| 3 | 2 | biimprcd | |- ( A e. y -> ( ( R1 ` x ) = y -> A e. ( R1 ` x ) ) ) |
| 4 | r1tr | |- Tr ( R1 ` x ) |
|
| 5 | trss | |- ( Tr ( R1 ` x ) -> ( A e. ( R1 ` x ) -> A C_ ( R1 ` x ) ) ) |
|
| 6 | 4 5 | ax-mp | |- ( A e. ( R1 ` x ) -> A C_ ( R1 ` x ) ) |
| 7 | elpwg | |- ( A e. ( R1 ` x ) -> ( A e. ~P ( R1 ` x ) <-> A C_ ( R1 ` x ) ) ) |
|
| 8 | 6 7 | mpbird | |- ( A e. ( R1 ` x ) -> A e. ~P ( R1 ` x ) ) |
| 9 | elfvdm | |- ( A e. ( R1 ` x ) -> x e. dom R1 ) |
|
| 10 | r1sucg | |- ( x e. dom R1 -> ( R1 ` suc x ) = ~P ( R1 ` x ) ) |
|
| 11 | 9 10 | syl | |- ( A e. ( R1 ` x ) -> ( R1 ` suc x ) = ~P ( R1 ` x ) ) |
| 12 | 8 11 | eleqtrrd | |- ( A e. ( R1 ` x ) -> A e. ( R1 ` suc x ) ) |
| 13 | 12 | a1i | |- ( x e. On -> ( A e. ( R1 ` x ) -> A e. ( R1 ` suc x ) ) ) |
| 14 | 3 13 | syl9 | |- ( A e. y -> ( x e. On -> ( ( R1 ` x ) = y -> A e. ( R1 ` suc x ) ) ) ) |
| 15 | 14 | reximdvai | |- ( A e. y -> ( E. x e. On ( R1 ` x ) = y -> E. x e. On A e. ( R1 ` suc x ) ) ) |
| 16 | r1funlim | |- ( Fun R1 /\ Lim dom R1 ) |
|
| 17 | 16 | simpli | |- Fun R1 |
| 18 | fvelima | |- ( ( Fun R1 /\ y e. ( R1 " On ) ) -> E. x e. On ( R1 ` x ) = y ) |
|
| 19 | 17 18 | mpan | |- ( y e. ( R1 " On ) -> E. x e. On ( R1 ` x ) = y ) |
| 20 | 15 19 | impel | |- ( ( A e. y /\ y e. ( R1 " On ) ) -> E. x e. On A e. ( R1 ` suc x ) ) |
| 21 | 20 | exlimiv | |- ( E. y ( A e. y /\ y e. ( R1 " On ) ) -> E. x e. On A e. ( R1 ` suc x ) ) |
| 22 | 1 21 | sylbi | |- ( A e. U. ( R1 " On ) -> E. x e. On A e. ( R1 ` suc x ) ) |
| 23 | elfvdm | |- ( A e. ( R1 ` suc x ) -> suc x e. dom R1 ) |
|
| 24 | fvelrn | |- ( ( Fun R1 /\ suc x e. dom R1 ) -> ( R1 ` suc x ) e. ran R1 ) |
|
| 25 | 17 23 24 | sylancr | |- ( A e. ( R1 ` suc x ) -> ( R1 ` suc x ) e. ran R1 ) |
| 26 | df-ima | |- ( R1 " On ) = ran ( R1 |` On ) |
|
| 27 | funrel | |- ( Fun R1 -> Rel R1 ) |
|
| 28 | 17 27 | ax-mp | |- Rel R1 |
| 29 | 16 | simpri | |- Lim dom R1 |
| 30 | limord | |- ( Lim dom R1 -> Ord dom R1 ) |
|
| 31 | ordsson | |- ( Ord dom R1 -> dom R1 C_ On ) |
|
| 32 | 29 30 31 | mp2b | |- dom R1 C_ On |
| 33 | relssres | |- ( ( Rel R1 /\ dom R1 C_ On ) -> ( R1 |` On ) = R1 ) |
|
| 34 | 28 32 33 | mp2an | |- ( R1 |` On ) = R1 |
| 35 | 34 | rneqi | |- ran ( R1 |` On ) = ran R1 |
| 36 | 26 35 | eqtri | |- ( R1 " On ) = ran R1 |
| 37 | 25 36 | eleqtrrdi | |- ( A e. ( R1 ` suc x ) -> ( R1 ` suc x ) e. ( R1 " On ) ) |
| 38 | elunii | |- ( ( A e. ( R1 ` suc x ) /\ ( R1 ` suc x ) e. ( R1 " On ) ) -> A e. U. ( R1 " On ) ) |
|
| 39 | 37 38 | mpdan | |- ( A e. ( R1 ` suc x ) -> A e. U. ( R1 " On ) ) |
| 40 | 39 | rexlimivw | |- ( E. x e. On A e. ( R1 ` suc x ) -> A e. U. ( R1 " On ) ) |
| 41 | 22 40 | impbii | |- ( A e. U. ( R1 " On ) <-> E. x e. On A e. ( R1 ` suc x ) ) |