This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of the R1 function is transitive. Lemma 2.10 of Kunen p. 97. One direction of r1elss that doesn't need A to be a set. (Contributed by Mario Carneiro, 22-Mar-2013) (Revised by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1elssi | |- ( A e. U. ( R1 " On ) -> A C_ U. ( R1 " On ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | triun | |- ( A. x e. On Tr ( R1 ` x ) -> Tr U_ x e. On ( R1 ` x ) ) |
|
| 2 | r1tr | |- Tr ( R1 ` x ) |
|
| 3 | 2 | a1i | |- ( x e. On -> Tr ( R1 ` x ) ) |
| 4 | 1 3 | mprg | |- Tr U_ x e. On ( R1 ` x ) |
| 5 | r1funlim | |- ( Fun R1 /\ Lim dom R1 ) |
|
| 6 | 5 | simpli | |- Fun R1 |
| 7 | funiunfv | |- ( Fun R1 -> U_ x e. On ( R1 ` x ) = U. ( R1 " On ) ) |
|
| 8 | 6 7 | ax-mp | |- U_ x e. On ( R1 ` x ) = U. ( R1 " On ) |
| 9 | treq | |- ( U_ x e. On ( R1 ` x ) = U. ( R1 " On ) -> ( Tr U_ x e. On ( R1 ` x ) <-> Tr U. ( R1 " On ) ) ) |
|
| 10 | 8 9 | ax-mp | |- ( Tr U_ x e. On ( R1 ` x ) <-> Tr U. ( R1 " On ) ) |
| 11 | 4 10 | mpbi | |- Tr U. ( R1 " On ) |
| 12 | trss | |- ( Tr U. ( R1 " On ) -> ( A e. U. ( R1 " On ) -> A C_ U. ( R1 " On ) ) ) |
|
| 13 | 11 12 | ax-mp | |- ( A e. U. ( R1 " On ) -> A C_ U. ( R1 " On ) ) |