This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994) (Proof shortened by Andrew Salmon, 9-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trel | |- ( Tr A -> ( ( B e. C /\ C e. A ) -> B e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr2 | |- ( Tr A <-> A. y A. x ( ( y e. x /\ x e. A ) -> y e. A ) ) |
|
| 2 | eleq12 | |- ( ( y = B /\ x = C ) -> ( y e. x <-> B e. C ) ) |
|
| 3 | eleq1 | |- ( x = C -> ( x e. A <-> C e. A ) ) |
|
| 4 | 3 | adantl | |- ( ( y = B /\ x = C ) -> ( x e. A <-> C e. A ) ) |
| 5 | 2 4 | anbi12d | |- ( ( y = B /\ x = C ) -> ( ( y e. x /\ x e. A ) <-> ( B e. C /\ C e. A ) ) ) |
| 6 | eleq1 | |- ( y = B -> ( y e. A <-> B e. A ) ) |
|
| 7 | 6 | adantr | |- ( ( y = B /\ x = C ) -> ( y e. A <-> B e. A ) ) |
| 8 | 5 7 | imbi12d | |- ( ( y = B /\ x = C ) -> ( ( ( y e. x /\ x e. A ) -> y e. A ) <-> ( ( B e. C /\ C e. A ) -> B e. A ) ) ) |
| 9 | 8 | spc2gv | |- ( ( B e. C /\ C e. A ) -> ( A. y A. x ( ( y e. x /\ x e. A ) -> y e. A ) -> ( ( B e. C /\ C e. A ) -> B e. A ) ) ) |
| 10 | 9 | pm2.43b | |- ( A. y A. x ( ( y e. x /\ x e. A ) -> y e. A ) -> ( ( B e. C /\ C e. A ) -> B e. A ) ) |
| 11 | 1 10 | sylbi | |- ( Tr A -> ( ( B e. C /\ C e. A ) -> B e. A ) ) |