This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A trichotomy law for ordinals. Proposition 7.10 of TakeutiZaring p. 38. Theorem 1.9(iii) of Schloeder p. 1. (Contributed by NM, 10-May-1994) (Proof shortened by Andrew Salmon, 25-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordtri3or | |- ( ( Ord A /\ Ord B ) -> ( A e. B \/ A = B \/ B e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordin | |- ( ( Ord A /\ Ord B ) -> Ord ( A i^i B ) ) |
|
| 2 | ordirr | |- ( Ord ( A i^i B ) -> -. ( A i^i B ) e. ( A i^i B ) ) |
|
| 3 | 1 2 | syl | |- ( ( Ord A /\ Ord B ) -> -. ( A i^i B ) e. ( A i^i B ) ) |
| 4 | ianor | |- ( -. ( ( A i^i B ) e. A /\ ( B i^i A ) e. B ) <-> ( -. ( A i^i B ) e. A \/ -. ( B i^i A ) e. B ) ) |
|
| 5 | elin | |- ( ( A i^i B ) e. ( A i^i B ) <-> ( ( A i^i B ) e. A /\ ( A i^i B ) e. B ) ) |
|
| 6 | incom | |- ( A i^i B ) = ( B i^i A ) |
|
| 7 | 6 | eleq1i | |- ( ( A i^i B ) e. B <-> ( B i^i A ) e. B ) |
| 8 | 7 | anbi2i | |- ( ( ( A i^i B ) e. A /\ ( A i^i B ) e. B ) <-> ( ( A i^i B ) e. A /\ ( B i^i A ) e. B ) ) |
| 9 | 5 8 | bitri | |- ( ( A i^i B ) e. ( A i^i B ) <-> ( ( A i^i B ) e. A /\ ( B i^i A ) e. B ) ) |
| 10 | 4 9 | xchnxbir | |- ( -. ( A i^i B ) e. ( A i^i B ) <-> ( -. ( A i^i B ) e. A \/ -. ( B i^i A ) e. B ) ) |
| 11 | 3 10 | sylib | |- ( ( Ord A /\ Ord B ) -> ( -. ( A i^i B ) e. A \/ -. ( B i^i A ) e. B ) ) |
| 12 | inss1 | |- ( A i^i B ) C_ A |
|
| 13 | ordsseleq | |- ( ( Ord ( A i^i B ) /\ Ord A ) -> ( ( A i^i B ) C_ A <-> ( ( A i^i B ) e. A \/ ( A i^i B ) = A ) ) ) |
|
| 14 | 12 13 | mpbii | |- ( ( Ord ( A i^i B ) /\ Ord A ) -> ( ( A i^i B ) e. A \/ ( A i^i B ) = A ) ) |
| 15 | 1 14 | sylan | |- ( ( ( Ord A /\ Ord B ) /\ Ord A ) -> ( ( A i^i B ) e. A \/ ( A i^i B ) = A ) ) |
| 16 | 15 | anabss1 | |- ( ( Ord A /\ Ord B ) -> ( ( A i^i B ) e. A \/ ( A i^i B ) = A ) ) |
| 17 | 16 | ord | |- ( ( Ord A /\ Ord B ) -> ( -. ( A i^i B ) e. A -> ( A i^i B ) = A ) ) |
| 18 | dfss2 | |- ( A C_ B <-> ( A i^i B ) = A ) |
|
| 19 | 17 18 | imbitrrdi | |- ( ( Ord A /\ Ord B ) -> ( -. ( A i^i B ) e. A -> A C_ B ) ) |
| 20 | ordin | |- ( ( Ord B /\ Ord A ) -> Ord ( B i^i A ) ) |
|
| 21 | inss1 | |- ( B i^i A ) C_ B |
|
| 22 | ordsseleq | |- ( ( Ord ( B i^i A ) /\ Ord B ) -> ( ( B i^i A ) C_ B <-> ( ( B i^i A ) e. B \/ ( B i^i A ) = B ) ) ) |
|
| 23 | 21 22 | mpbii | |- ( ( Ord ( B i^i A ) /\ Ord B ) -> ( ( B i^i A ) e. B \/ ( B i^i A ) = B ) ) |
| 24 | 20 23 | sylan | |- ( ( ( Ord B /\ Ord A ) /\ Ord B ) -> ( ( B i^i A ) e. B \/ ( B i^i A ) = B ) ) |
| 25 | 24 | anabss4 | |- ( ( Ord A /\ Ord B ) -> ( ( B i^i A ) e. B \/ ( B i^i A ) = B ) ) |
| 26 | 25 | ord | |- ( ( Ord A /\ Ord B ) -> ( -. ( B i^i A ) e. B -> ( B i^i A ) = B ) ) |
| 27 | dfss2 | |- ( B C_ A <-> ( B i^i A ) = B ) |
|
| 28 | 26 27 | imbitrrdi | |- ( ( Ord A /\ Ord B ) -> ( -. ( B i^i A ) e. B -> B C_ A ) ) |
| 29 | 19 28 | orim12d | |- ( ( Ord A /\ Ord B ) -> ( ( -. ( A i^i B ) e. A \/ -. ( B i^i A ) e. B ) -> ( A C_ B \/ B C_ A ) ) ) |
| 30 | 11 29 | mpd | |- ( ( Ord A /\ Ord B ) -> ( A C_ B \/ B C_ A ) ) |
| 31 | sspsstri | |- ( ( A C_ B \/ B C_ A ) <-> ( A C. B \/ A = B \/ B C. A ) ) |
|
| 32 | 30 31 | sylib | |- ( ( Ord A /\ Ord B ) -> ( A C. B \/ A = B \/ B C. A ) ) |
| 33 | ordelpss | |- ( ( Ord A /\ Ord B ) -> ( A e. B <-> A C. B ) ) |
|
| 34 | biidd | |- ( ( Ord A /\ Ord B ) -> ( A = B <-> A = B ) ) |
|
| 35 | ordelpss | |- ( ( Ord B /\ Ord A ) -> ( B e. A <-> B C. A ) ) |
|
| 36 | 35 | ancoms | |- ( ( Ord A /\ Ord B ) -> ( B e. A <-> B C. A ) ) |
| 37 | 33 34 36 | 3orbi123d | |- ( ( Ord A /\ Ord B ) -> ( ( A e. B \/ A = B \/ B e. A ) <-> ( A C. B \/ A = B \/ B C. A ) ) ) |
| 38 | 32 37 | mpbird | |- ( ( Ord A /\ Ord B ) -> ( A e. B \/ A = B \/ B e. A ) ) |