This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The last few partial sums of a sequence that ends with all zeroes (or any element which is a right-identity for .+ ) are all the same. (Contributed by Mario Carneiro, 13-Jul-2013) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqid2.1 | |- ( ( ph /\ x e. S ) -> ( x .+ Z ) = x ) |
|
| seqid2.2 | |- ( ph -> K e. ( ZZ>= ` M ) ) |
||
| seqid2.3 | |- ( ph -> N e. ( ZZ>= ` K ) ) |
||
| seqid2.4 | |- ( ph -> ( seq M ( .+ , F ) ` K ) e. S ) |
||
| seqid2.5 | |- ( ( ph /\ x e. ( ( K + 1 ) ... N ) ) -> ( F ` x ) = Z ) |
||
| Assertion | seqid2 | |- ( ph -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqid2.1 | |- ( ( ph /\ x e. S ) -> ( x .+ Z ) = x ) |
|
| 2 | seqid2.2 | |- ( ph -> K e. ( ZZ>= ` M ) ) |
|
| 3 | seqid2.3 | |- ( ph -> N e. ( ZZ>= ` K ) ) |
|
| 4 | seqid2.4 | |- ( ph -> ( seq M ( .+ , F ) ` K ) e. S ) |
|
| 5 | seqid2.5 | |- ( ( ph /\ x e. ( ( K + 1 ) ... N ) ) -> ( F ` x ) = Z ) |
|
| 6 | eluzfz2 | |- ( N e. ( ZZ>= ` K ) -> N e. ( K ... N ) ) |
|
| 7 | 3 6 | syl | |- ( ph -> N e. ( K ... N ) ) |
| 8 | eleq1 | |- ( x = K -> ( x e. ( K ... N ) <-> K e. ( K ... N ) ) ) |
|
| 9 | fveq2 | |- ( x = K -> ( seq M ( .+ , F ) ` x ) = ( seq M ( .+ , F ) ` K ) ) |
|
| 10 | 9 | eqeq2d | |- ( x = K -> ( ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` x ) <-> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` K ) ) ) |
| 11 | 8 10 | imbi12d | |- ( x = K -> ( ( x e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` x ) ) <-> ( K e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` K ) ) ) ) |
| 12 | 11 | imbi2d | |- ( x = K -> ( ( ph -> ( x e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` x ) ) ) <-> ( ph -> ( K e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` K ) ) ) ) ) |
| 13 | eleq1 | |- ( x = n -> ( x e. ( K ... N ) <-> n e. ( K ... N ) ) ) |
|
| 14 | fveq2 | |- ( x = n -> ( seq M ( .+ , F ) ` x ) = ( seq M ( .+ , F ) ` n ) ) |
|
| 15 | 14 | eqeq2d | |- ( x = n -> ( ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` x ) <-> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` n ) ) ) |
| 16 | 13 15 | imbi12d | |- ( x = n -> ( ( x e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` x ) ) <-> ( n e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` n ) ) ) ) |
| 17 | 16 | imbi2d | |- ( x = n -> ( ( ph -> ( x e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` x ) ) ) <-> ( ph -> ( n e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` n ) ) ) ) ) |
| 18 | eleq1 | |- ( x = ( n + 1 ) -> ( x e. ( K ... N ) <-> ( n + 1 ) e. ( K ... N ) ) ) |
|
| 19 | fveq2 | |- ( x = ( n + 1 ) -> ( seq M ( .+ , F ) ` x ) = ( seq M ( .+ , F ) ` ( n + 1 ) ) ) |
|
| 20 | 19 | eqeq2d | |- ( x = ( n + 1 ) -> ( ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` x ) <-> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` ( n + 1 ) ) ) ) |
| 21 | 18 20 | imbi12d | |- ( x = ( n + 1 ) -> ( ( x e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` x ) ) <-> ( ( n + 1 ) e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` ( n + 1 ) ) ) ) ) |
| 22 | 21 | imbi2d | |- ( x = ( n + 1 ) -> ( ( ph -> ( x e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` x ) ) ) <-> ( ph -> ( ( n + 1 ) e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` ( n + 1 ) ) ) ) ) ) |
| 23 | eleq1 | |- ( x = N -> ( x e. ( K ... N ) <-> N e. ( K ... N ) ) ) |
|
| 24 | fveq2 | |- ( x = N -> ( seq M ( .+ , F ) ` x ) = ( seq M ( .+ , F ) ` N ) ) |
|
| 25 | 24 | eqeq2d | |- ( x = N -> ( ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` x ) <-> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` N ) ) ) |
| 26 | 23 25 | imbi12d | |- ( x = N -> ( ( x e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` x ) ) <-> ( N e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` N ) ) ) ) |
| 27 | 26 | imbi2d | |- ( x = N -> ( ( ph -> ( x e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` x ) ) ) <-> ( ph -> ( N e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` N ) ) ) ) ) |
| 28 | eqidd | |- ( K e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` K ) ) |
|
| 29 | 28 | 2a1i | |- ( K e. ZZ -> ( ph -> ( K e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` K ) ) ) ) |
| 30 | peano2fzr | |- ( ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) -> n e. ( K ... N ) ) |
|
| 31 | 30 | adantl | |- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> n e. ( K ... N ) ) |
| 32 | 31 | expr | |- ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( ( n + 1 ) e. ( K ... N ) -> n e. ( K ... N ) ) ) |
| 33 | 32 | imim1d | |- ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( ( n e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` n ) ) -> ( ( n + 1 ) e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` n ) ) ) ) |
| 34 | oveq1 | |- ( ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` n ) -> ( ( seq M ( .+ , F ) ` K ) .+ ( F ` ( n + 1 ) ) ) = ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
|
| 35 | fveqeq2 | |- ( x = ( n + 1 ) -> ( ( F ` x ) = Z <-> ( F ` ( n + 1 ) ) = Z ) ) |
|
| 36 | 5 | ralrimiva | |- ( ph -> A. x e. ( ( K + 1 ) ... N ) ( F ` x ) = Z ) |
| 37 | 36 | adantr | |- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> A. x e. ( ( K + 1 ) ... N ) ( F ` x ) = Z ) |
| 38 | eluzp1p1 | |- ( n e. ( ZZ>= ` K ) -> ( n + 1 ) e. ( ZZ>= ` ( K + 1 ) ) ) |
|
| 39 | 38 | ad2antrl | |- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> ( n + 1 ) e. ( ZZ>= ` ( K + 1 ) ) ) |
| 40 | elfzuz3 | |- ( ( n + 1 ) e. ( K ... N ) -> N e. ( ZZ>= ` ( n + 1 ) ) ) |
|
| 41 | 40 | ad2antll | |- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> N e. ( ZZ>= ` ( n + 1 ) ) ) |
| 42 | elfzuzb | |- ( ( n + 1 ) e. ( ( K + 1 ) ... N ) <-> ( ( n + 1 ) e. ( ZZ>= ` ( K + 1 ) ) /\ N e. ( ZZ>= ` ( n + 1 ) ) ) ) |
|
| 43 | 39 41 42 | sylanbrc | |- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> ( n + 1 ) e. ( ( K + 1 ) ... N ) ) |
| 44 | 35 37 43 | rspcdva | |- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> ( F ` ( n + 1 ) ) = Z ) |
| 45 | 44 | oveq2d | |- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> ( ( seq M ( .+ , F ) ` K ) .+ ( F ` ( n + 1 ) ) ) = ( ( seq M ( .+ , F ) ` K ) .+ Z ) ) |
| 46 | oveq1 | |- ( x = ( seq M ( .+ , F ) ` K ) -> ( x .+ Z ) = ( ( seq M ( .+ , F ) ` K ) .+ Z ) ) |
|
| 47 | id | |- ( x = ( seq M ( .+ , F ) ` K ) -> x = ( seq M ( .+ , F ) ` K ) ) |
|
| 48 | 46 47 | eqeq12d | |- ( x = ( seq M ( .+ , F ) ` K ) -> ( ( x .+ Z ) = x <-> ( ( seq M ( .+ , F ) ` K ) .+ Z ) = ( seq M ( .+ , F ) ` K ) ) ) |
| 49 | 1 | ralrimiva | |- ( ph -> A. x e. S ( x .+ Z ) = x ) |
| 50 | 48 49 4 | rspcdva | |- ( ph -> ( ( seq M ( .+ , F ) ` K ) .+ Z ) = ( seq M ( .+ , F ) ` K ) ) |
| 51 | 50 | adantr | |- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> ( ( seq M ( .+ , F ) ` K ) .+ Z ) = ( seq M ( .+ , F ) ` K ) ) |
| 52 | 45 51 | eqtr2d | |- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> ( seq M ( .+ , F ) ` K ) = ( ( seq M ( .+ , F ) ` K ) .+ ( F ` ( n + 1 ) ) ) ) |
| 53 | simprl | |- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> n e. ( ZZ>= ` K ) ) |
|
| 54 | 2 | adantr | |- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> K e. ( ZZ>= ` M ) ) |
| 55 | uztrn | |- ( ( n e. ( ZZ>= ` K ) /\ K e. ( ZZ>= ` M ) ) -> n e. ( ZZ>= ` M ) ) |
|
| 56 | 53 54 55 | syl2anc | |- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> n e. ( ZZ>= ` M ) ) |
| 57 | seqp1 | |- ( n e. ( ZZ>= ` M ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
|
| 58 | 56 57 | syl | |- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
| 59 | 52 58 | eqeq12d | |- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> ( ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` ( n + 1 ) ) <-> ( ( seq M ( .+ , F ) ` K ) .+ ( F ` ( n + 1 ) ) ) = ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) ) |
| 60 | 34 59 | imbitrrid | |- ( ( ph /\ ( n e. ( ZZ>= ` K ) /\ ( n + 1 ) e. ( K ... N ) ) ) -> ( ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` n ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` ( n + 1 ) ) ) ) |
| 61 | 33 60 | animpimp2impd | |- ( n e. ( ZZ>= ` K ) -> ( ( ph -> ( n e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` n ) ) ) -> ( ph -> ( ( n + 1 ) e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` ( n + 1 ) ) ) ) ) ) |
| 62 | 12 17 22 27 29 61 | uzind4 | |- ( N e. ( ZZ>= ` K ) -> ( ph -> ( N e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` N ) ) ) ) |
| 63 | 3 62 | mpcom | |- ( ph -> ( N e. ( K ... N ) -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` N ) ) ) |
| 64 | 7 63 | mpd | |- ( ph -> ( seq M ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` N ) ) |