This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reversed second Peano axiom for upper integers. (Contributed by NM, 2-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | peano2uzr | |- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> N e. ( ZZ>= ` M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelcn | |- ( N e. ( ZZ>= ` ( M + 1 ) ) -> N e. CC ) |
|
| 2 | ax-1cn | |- 1 e. CC |
|
| 3 | npcan | |- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
|
| 4 | 1 2 3 | sylancl | |- ( N e. ( ZZ>= ` ( M + 1 ) ) -> ( ( N - 1 ) + 1 ) = N ) |
| 5 | 4 | adantl | |- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( N - 1 ) + 1 ) = N ) |
| 6 | eluzp1m1 | |- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
|
| 7 | peano2uz | |- ( ( N - 1 ) e. ( ZZ>= ` M ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` M ) ) |
|
| 8 | 6 7 | syl | |- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` M ) ) |
| 9 | 5 8 | eqeltrrd | |- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> N e. ( ZZ>= ` M ) ) |