This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpnnen1 . (Contributed by Mario Carneiro, 12-May-2013) (Revised by NM, 13-Aug-2021) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rpnnen1lem.1 | |- T = { n e. ZZ | ( n / k ) < x } |
|
| rpnnen1lem.2 | |- F = ( x e. RR |-> ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ) |
||
| rpnnen1lem.n | |- NN e. _V |
||
| rpnnen1lem.q | |- QQ e. _V |
||
| Assertion | rpnnen1lem4 | |- ( x e. RR -> sup ( ran ( F ` x ) , RR , < ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen1lem.1 | |- T = { n e. ZZ | ( n / k ) < x } |
|
| 2 | rpnnen1lem.2 | |- F = ( x e. RR |-> ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ) |
|
| 3 | rpnnen1lem.n | |- NN e. _V |
|
| 4 | rpnnen1lem.q | |- QQ e. _V |
|
| 5 | 1 2 3 4 | rpnnen1lem1 | |- ( x e. RR -> ( F ` x ) e. ( QQ ^m NN ) ) |
| 6 | 4 3 | elmap | |- ( ( F ` x ) e. ( QQ ^m NN ) <-> ( F ` x ) : NN --> QQ ) |
| 7 | 5 6 | sylib | |- ( x e. RR -> ( F ` x ) : NN --> QQ ) |
| 8 | frn | |- ( ( F ` x ) : NN --> QQ -> ran ( F ` x ) C_ QQ ) |
|
| 9 | qssre | |- QQ C_ RR |
|
| 10 | 8 9 | sstrdi | |- ( ( F ` x ) : NN --> QQ -> ran ( F ` x ) C_ RR ) |
| 11 | 7 10 | syl | |- ( x e. RR -> ran ( F ` x ) C_ RR ) |
| 12 | 1nn | |- 1 e. NN |
|
| 13 | 12 | ne0ii | |- NN =/= (/) |
| 14 | fdm | |- ( ( F ` x ) : NN --> QQ -> dom ( F ` x ) = NN ) |
|
| 15 | 14 | neeq1d | |- ( ( F ` x ) : NN --> QQ -> ( dom ( F ` x ) =/= (/) <-> NN =/= (/) ) ) |
| 16 | 13 15 | mpbiri | |- ( ( F ` x ) : NN --> QQ -> dom ( F ` x ) =/= (/) ) |
| 17 | dm0rn0 | |- ( dom ( F ` x ) = (/) <-> ran ( F ` x ) = (/) ) |
|
| 18 | 17 | necon3bii | |- ( dom ( F ` x ) =/= (/) <-> ran ( F ` x ) =/= (/) ) |
| 19 | 16 18 | sylib | |- ( ( F ` x ) : NN --> QQ -> ran ( F ` x ) =/= (/) ) |
| 20 | 7 19 | syl | |- ( x e. RR -> ran ( F ` x ) =/= (/) ) |
| 21 | 1 2 3 4 | rpnnen1lem3 | |- ( x e. RR -> A. n e. ran ( F ` x ) n <_ x ) |
| 22 | breq2 | |- ( y = x -> ( n <_ y <-> n <_ x ) ) |
|
| 23 | 22 | ralbidv | |- ( y = x -> ( A. n e. ran ( F ` x ) n <_ y <-> A. n e. ran ( F ` x ) n <_ x ) ) |
| 24 | 23 | rspcev | |- ( ( x e. RR /\ A. n e. ran ( F ` x ) n <_ x ) -> E. y e. RR A. n e. ran ( F ` x ) n <_ y ) |
| 25 | 21 24 | mpdan | |- ( x e. RR -> E. y e. RR A. n e. ran ( F ` x ) n <_ y ) |
| 26 | suprcl | |- ( ( ran ( F ` x ) C_ RR /\ ran ( F ` x ) =/= (/) /\ E. y e. RR A. n e. ran ( F ` x ) n <_ y ) -> sup ( ran ( F ` x ) , RR , < ) e. RR ) |
|
| 27 | 11 20 25 26 | syl3anc | |- ( x e. RR -> sup ( ran ( F ` x ) , RR , < ) e. RR ) |