This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpnnen1 . (Contributed by Mario Carneiro, 12-May-2013) (Revised by NM, 13-Aug-2021) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rpnnen1lem.1 | |- T = { n e. ZZ | ( n / k ) < x } |
|
| rpnnen1lem.2 | |- F = ( x e. RR |-> ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ) |
||
| rpnnen1lem.n | |- NN e. _V |
||
| rpnnen1lem.q | |- QQ e. _V |
||
| Assertion | rpnnen1lem3 | |- ( x e. RR -> A. n e. ran ( F ` x ) n <_ x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen1lem.1 | |- T = { n e. ZZ | ( n / k ) < x } |
|
| 2 | rpnnen1lem.2 | |- F = ( x e. RR |-> ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ) |
|
| 3 | rpnnen1lem.n | |- NN e. _V |
|
| 4 | rpnnen1lem.q | |- QQ e. _V |
|
| 5 | 3 | mptex | |- ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) e. _V |
| 6 | 2 | fvmpt2 | |- ( ( x e. RR /\ ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) e. _V ) -> ( F ` x ) = ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ) |
| 7 | 5 6 | mpan2 | |- ( x e. RR -> ( F ` x ) = ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ) |
| 8 | 7 | fveq1d | |- ( x e. RR -> ( ( F ` x ) ` k ) = ( ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ` k ) ) |
| 9 | ovex | |- ( sup ( T , RR , < ) / k ) e. _V |
|
| 10 | eqid | |- ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) = ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) |
|
| 11 | 10 | fvmpt2 | |- ( ( k e. NN /\ ( sup ( T , RR , < ) / k ) e. _V ) -> ( ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ` k ) = ( sup ( T , RR , < ) / k ) ) |
| 12 | 9 11 | mpan2 | |- ( k e. NN -> ( ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ` k ) = ( sup ( T , RR , < ) / k ) ) |
| 13 | 8 12 | sylan9eq | |- ( ( x e. RR /\ k e. NN ) -> ( ( F ` x ) ` k ) = ( sup ( T , RR , < ) / k ) ) |
| 14 | 1 | reqabi | |- ( n e. T <-> ( n e. ZZ /\ ( n / k ) < x ) ) |
| 15 | zre | |- ( n e. ZZ -> n e. RR ) |
|
| 16 | 15 | adantl | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> n e. RR ) |
| 17 | simpll | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> x e. RR ) |
|
| 18 | nnre | |- ( k e. NN -> k e. RR ) |
|
| 19 | nngt0 | |- ( k e. NN -> 0 < k ) |
|
| 20 | 18 19 | jca | |- ( k e. NN -> ( k e. RR /\ 0 < k ) ) |
| 21 | 20 | ad2antlr | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( k e. RR /\ 0 < k ) ) |
| 22 | ltdivmul | |- ( ( n e. RR /\ x e. RR /\ ( k e. RR /\ 0 < k ) ) -> ( ( n / k ) < x <-> n < ( k x. x ) ) ) |
|
| 23 | 16 17 21 22 | syl3anc | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( ( n / k ) < x <-> n < ( k x. x ) ) ) |
| 24 | 18 | ad2antlr | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> k e. RR ) |
| 25 | remulcl | |- ( ( k e. RR /\ x e. RR ) -> ( k x. x ) e. RR ) |
|
| 26 | 24 17 25 | syl2anc | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( k x. x ) e. RR ) |
| 27 | ltle | |- ( ( n e. RR /\ ( k x. x ) e. RR ) -> ( n < ( k x. x ) -> n <_ ( k x. x ) ) ) |
|
| 28 | 16 26 27 | syl2anc | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( n < ( k x. x ) -> n <_ ( k x. x ) ) ) |
| 29 | 23 28 | sylbid | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( ( n / k ) < x -> n <_ ( k x. x ) ) ) |
| 30 | 29 | impr | |- ( ( ( x e. RR /\ k e. NN ) /\ ( n e. ZZ /\ ( n / k ) < x ) ) -> n <_ ( k x. x ) ) |
| 31 | 14 30 | sylan2b | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. T ) -> n <_ ( k x. x ) ) |
| 32 | 31 | ralrimiva | |- ( ( x e. RR /\ k e. NN ) -> A. n e. T n <_ ( k x. x ) ) |
| 33 | ssrab2 | |- { n e. ZZ | ( n / k ) < x } C_ ZZ |
|
| 34 | 1 33 | eqsstri | |- T C_ ZZ |
| 35 | zssre | |- ZZ C_ RR |
|
| 36 | 34 35 | sstri | |- T C_ RR |
| 37 | 36 | a1i | |- ( ( x e. RR /\ k e. NN ) -> T C_ RR ) |
| 38 | 25 | ancoms | |- ( ( x e. RR /\ k e. RR ) -> ( k x. x ) e. RR ) |
| 39 | 18 38 | sylan2 | |- ( ( x e. RR /\ k e. NN ) -> ( k x. x ) e. RR ) |
| 40 | btwnz | |- ( ( k x. x ) e. RR -> ( E. n e. ZZ n < ( k x. x ) /\ E. n e. ZZ ( k x. x ) < n ) ) |
|
| 41 | 40 | simpld | |- ( ( k x. x ) e. RR -> E. n e. ZZ n < ( k x. x ) ) |
| 42 | 39 41 | syl | |- ( ( x e. RR /\ k e. NN ) -> E. n e. ZZ n < ( k x. x ) ) |
| 43 | 23 | rexbidva | |- ( ( x e. RR /\ k e. NN ) -> ( E. n e. ZZ ( n / k ) < x <-> E. n e. ZZ n < ( k x. x ) ) ) |
| 44 | 42 43 | mpbird | |- ( ( x e. RR /\ k e. NN ) -> E. n e. ZZ ( n / k ) < x ) |
| 45 | rabn0 | |- ( { n e. ZZ | ( n / k ) < x } =/= (/) <-> E. n e. ZZ ( n / k ) < x ) |
|
| 46 | 44 45 | sylibr | |- ( ( x e. RR /\ k e. NN ) -> { n e. ZZ | ( n / k ) < x } =/= (/) ) |
| 47 | 1 | neeq1i | |- ( T =/= (/) <-> { n e. ZZ | ( n / k ) < x } =/= (/) ) |
| 48 | 46 47 | sylibr | |- ( ( x e. RR /\ k e. NN ) -> T =/= (/) ) |
| 49 | breq2 | |- ( y = ( k x. x ) -> ( n <_ y <-> n <_ ( k x. x ) ) ) |
|
| 50 | 49 | ralbidv | |- ( y = ( k x. x ) -> ( A. n e. T n <_ y <-> A. n e. T n <_ ( k x. x ) ) ) |
| 51 | 50 | rspcev | |- ( ( ( k x. x ) e. RR /\ A. n e. T n <_ ( k x. x ) ) -> E. y e. RR A. n e. T n <_ y ) |
| 52 | 39 32 51 | syl2anc | |- ( ( x e. RR /\ k e. NN ) -> E. y e. RR A. n e. T n <_ y ) |
| 53 | suprleub | |- ( ( ( T C_ RR /\ T =/= (/) /\ E. y e. RR A. n e. T n <_ y ) /\ ( k x. x ) e. RR ) -> ( sup ( T , RR , < ) <_ ( k x. x ) <-> A. n e. T n <_ ( k x. x ) ) ) |
|
| 54 | 37 48 52 39 53 | syl31anc | |- ( ( x e. RR /\ k e. NN ) -> ( sup ( T , RR , < ) <_ ( k x. x ) <-> A. n e. T n <_ ( k x. x ) ) ) |
| 55 | 32 54 | mpbird | |- ( ( x e. RR /\ k e. NN ) -> sup ( T , RR , < ) <_ ( k x. x ) ) |
| 56 | 1 2 | rpnnen1lem2 | |- ( ( x e. RR /\ k e. NN ) -> sup ( T , RR , < ) e. ZZ ) |
| 57 | 56 | zred | |- ( ( x e. RR /\ k e. NN ) -> sup ( T , RR , < ) e. RR ) |
| 58 | simpl | |- ( ( x e. RR /\ k e. NN ) -> x e. RR ) |
|
| 59 | 20 | adantl | |- ( ( x e. RR /\ k e. NN ) -> ( k e. RR /\ 0 < k ) ) |
| 60 | ledivmul | |- ( ( sup ( T , RR , < ) e. RR /\ x e. RR /\ ( k e. RR /\ 0 < k ) ) -> ( ( sup ( T , RR , < ) / k ) <_ x <-> sup ( T , RR , < ) <_ ( k x. x ) ) ) |
|
| 61 | 57 58 59 60 | syl3anc | |- ( ( x e. RR /\ k e. NN ) -> ( ( sup ( T , RR , < ) / k ) <_ x <-> sup ( T , RR , < ) <_ ( k x. x ) ) ) |
| 62 | 55 61 | mpbird | |- ( ( x e. RR /\ k e. NN ) -> ( sup ( T , RR , < ) / k ) <_ x ) |
| 63 | 13 62 | eqbrtrd | |- ( ( x e. RR /\ k e. NN ) -> ( ( F ` x ) ` k ) <_ x ) |
| 64 | 63 | ralrimiva | |- ( x e. RR -> A. k e. NN ( ( F ` x ) ` k ) <_ x ) |
| 65 | 1 2 3 4 | rpnnen1lem1 | |- ( x e. RR -> ( F ` x ) e. ( QQ ^m NN ) ) |
| 66 | 4 3 | elmap | |- ( ( F ` x ) e. ( QQ ^m NN ) <-> ( F ` x ) : NN --> QQ ) |
| 67 | 65 66 | sylib | |- ( x e. RR -> ( F ` x ) : NN --> QQ ) |
| 68 | ffn | |- ( ( F ` x ) : NN --> QQ -> ( F ` x ) Fn NN ) |
|
| 69 | breq1 | |- ( n = ( ( F ` x ) ` k ) -> ( n <_ x <-> ( ( F ` x ) ` k ) <_ x ) ) |
|
| 70 | 69 | ralrn | |- ( ( F ` x ) Fn NN -> ( A. n e. ran ( F ` x ) n <_ x <-> A. k e. NN ( ( F ` x ) ` k ) <_ x ) ) |
| 71 | 67 68 70 | 3syl | |- ( x e. RR -> ( A. n e. ran ( F ` x ) n <_ x <-> A. k e. NN ( ( F ` x ) ` k ) <_ x ) ) |
| 72 | 64 71 | mpbird | |- ( x e. RR -> A. n e. ran ( F ` x ) n <_ x ) |