This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpnnen1 . (Contributed by Mario Carneiro, 12-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rpnnen1lem.1 | |- T = { n e. ZZ | ( n / k ) < x } |
|
| rpnnen1lem.2 | |- F = ( x e. RR |-> ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ) |
||
| Assertion | rpnnen1lem2 | |- ( ( x e. RR /\ k e. NN ) -> sup ( T , RR , < ) e. ZZ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen1lem.1 | |- T = { n e. ZZ | ( n / k ) < x } |
|
| 2 | rpnnen1lem.2 | |- F = ( x e. RR |-> ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ) |
|
| 3 | 1 | ssrab3 | |- T C_ ZZ |
| 4 | nnre | |- ( k e. NN -> k e. RR ) |
|
| 5 | remulcl | |- ( ( k e. RR /\ x e. RR ) -> ( k x. x ) e. RR ) |
|
| 6 | 5 | ancoms | |- ( ( x e. RR /\ k e. RR ) -> ( k x. x ) e. RR ) |
| 7 | 4 6 | sylan2 | |- ( ( x e. RR /\ k e. NN ) -> ( k x. x ) e. RR ) |
| 8 | btwnz | |- ( ( k x. x ) e. RR -> ( E. n e. ZZ n < ( k x. x ) /\ E. n e. ZZ ( k x. x ) < n ) ) |
|
| 9 | 8 | simpld | |- ( ( k x. x ) e. RR -> E. n e. ZZ n < ( k x. x ) ) |
| 10 | 7 9 | syl | |- ( ( x e. RR /\ k e. NN ) -> E. n e. ZZ n < ( k x. x ) ) |
| 11 | zre | |- ( n e. ZZ -> n e. RR ) |
|
| 12 | 11 | adantl | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> n e. RR ) |
| 13 | simpll | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> x e. RR ) |
|
| 14 | nngt0 | |- ( k e. NN -> 0 < k ) |
|
| 15 | 4 14 | jca | |- ( k e. NN -> ( k e. RR /\ 0 < k ) ) |
| 16 | 15 | ad2antlr | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( k e. RR /\ 0 < k ) ) |
| 17 | ltdivmul | |- ( ( n e. RR /\ x e. RR /\ ( k e. RR /\ 0 < k ) ) -> ( ( n / k ) < x <-> n < ( k x. x ) ) ) |
|
| 18 | 12 13 16 17 | syl3anc | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( ( n / k ) < x <-> n < ( k x. x ) ) ) |
| 19 | 18 | rexbidva | |- ( ( x e. RR /\ k e. NN ) -> ( E. n e. ZZ ( n / k ) < x <-> E. n e. ZZ n < ( k x. x ) ) ) |
| 20 | 10 19 | mpbird | |- ( ( x e. RR /\ k e. NN ) -> E. n e. ZZ ( n / k ) < x ) |
| 21 | rabn0 | |- ( { n e. ZZ | ( n / k ) < x } =/= (/) <-> E. n e. ZZ ( n / k ) < x ) |
|
| 22 | 20 21 | sylibr | |- ( ( x e. RR /\ k e. NN ) -> { n e. ZZ | ( n / k ) < x } =/= (/) ) |
| 23 | 1 | neeq1i | |- ( T =/= (/) <-> { n e. ZZ | ( n / k ) < x } =/= (/) ) |
| 24 | 22 23 | sylibr | |- ( ( x e. RR /\ k e. NN ) -> T =/= (/) ) |
| 25 | 1 | reqabi | |- ( n e. T <-> ( n e. ZZ /\ ( n / k ) < x ) ) |
| 26 | 4 | ad2antlr | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> k e. RR ) |
| 27 | 26 13 5 | syl2anc | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( k x. x ) e. RR ) |
| 28 | ltle | |- ( ( n e. RR /\ ( k x. x ) e. RR ) -> ( n < ( k x. x ) -> n <_ ( k x. x ) ) ) |
|
| 29 | 12 27 28 | syl2anc | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( n < ( k x. x ) -> n <_ ( k x. x ) ) ) |
| 30 | 18 29 | sylbid | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( ( n / k ) < x -> n <_ ( k x. x ) ) ) |
| 31 | 30 | impr | |- ( ( ( x e. RR /\ k e. NN ) /\ ( n e. ZZ /\ ( n / k ) < x ) ) -> n <_ ( k x. x ) ) |
| 32 | 25 31 | sylan2b | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. T ) -> n <_ ( k x. x ) ) |
| 33 | 32 | ralrimiva | |- ( ( x e. RR /\ k e. NN ) -> A. n e. T n <_ ( k x. x ) ) |
| 34 | brralrspcev | |- ( ( ( k x. x ) e. RR /\ A. n e. T n <_ ( k x. x ) ) -> E. y e. RR A. n e. T n <_ y ) |
|
| 35 | 7 33 34 | syl2anc | |- ( ( x e. RR /\ k e. NN ) -> E. y e. RR A. n e. T n <_ y ) |
| 36 | suprzcl | |- ( ( T C_ ZZ /\ T =/= (/) /\ E. y e. RR A. n e. T n <_ y ) -> sup ( T , RR , < ) e. T ) |
|
| 37 | 3 24 35 36 | mp3an2i | |- ( ( x e. RR /\ k e. NN ) -> sup ( T , RR , < ) e. T ) |
| 38 | 3 37 | sselid | |- ( ( x e. RR /\ k e. NN ) -> sup ( T , RR , < ) e. ZZ ) |