This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpnnen1 . (Contributed by Mario Carneiro, 12-May-2013) (Revised by NM, 13-Aug-2021) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rpnnen1lem.1 | |- T = { n e. ZZ | ( n / k ) < x } |
|
| rpnnen1lem.2 | |- F = ( x e. RR |-> ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ) |
||
| rpnnen1lem.n | |- NN e. _V |
||
| rpnnen1lem.q | |- QQ e. _V |
||
| Assertion | rpnnen1lem1 | |- ( x e. RR -> ( F ` x ) e. ( QQ ^m NN ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen1lem.1 | |- T = { n e. ZZ | ( n / k ) < x } |
|
| 2 | rpnnen1lem.2 | |- F = ( x e. RR |-> ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ) |
|
| 3 | rpnnen1lem.n | |- NN e. _V |
|
| 4 | rpnnen1lem.q | |- QQ e. _V |
|
| 5 | 3 | mptex | |- ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) e. _V |
| 6 | 2 | fvmpt2 | |- ( ( x e. RR /\ ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) e. _V ) -> ( F ` x ) = ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ) |
| 7 | 5 6 | mpan2 | |- ( x e. RR -> ( F ` x ) = ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ) |
| 8 | ssrab2 | |- { n e. ZZ | ( n / k ) < x } C_ ZZ |
|
| 9 | 1 8 | eqsstri | |- T C_ ZZ |
| 10 | 9 | a1i | |- ( ( x e. RR /\ k e. NN ) -> T C_ ZZ ) |
| 11 | nnre | |- ( k e. NN -> k e. RR ) |
|
| 12 | remulcl | |- ( ( k e. RR /\ x e. RR ) -> ( k x. x ) e. RR ) |
|
| 13 | 12 | ancoms | |- ( ( x e. RR /\ k e. RR ) -> ( k x. x ) e. RR ) |
| 14 | 11 13 | sylan2 | |- ( ( x e. RR /\ k e. NN ) -> ( k x. x ) e. RR ) |
| 15 | btwnz | |- ( ( k x. x ) e. RR -> ( E. n e. ZZ n < ( k x. x ) /\ E. n e. ZZ ( k x. x ) < n ) ) |
|
| 16 | 15 | simpld | |- ( ( k x. x ) e. RR -> E. n e. ZZ n < ( k x. x ) ) |
| 17 | 14 16 | syl | |- ( ( x e. RR /\ k e. NN ) -> E. n e. ZZ n < ( k x. x ) ) |
| 18 | zre | |- ( n e. ZZ -> n e. RR ) |
|
| 19 | 18 | adantl | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> n e. RR ) |
| 20 | simpll | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> x e. RR ) |
|
| 21 | nngt0 | |- ( k e. NN -> 0 < k ) |
|
| 22 | 11 21 | jca | |- ( k e. NN -> ( k e. RR /\ 0 < k ) ) |
| 23 | 22 | ad2antlr | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( k e. RR /\ 0 < k ) ) |
| 24 | ltdivmul | |- ( ( n e. RR /\ x e. RR /\ ( k e. RR /\ 0 < k ) ) -> ( ( n / k ) < x <-> n < ( k x. x ) ) ) |
|
| 25 | 19 20 23 24 | syl3anc | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( ( n / k ) < x <-> n < ( k x. x ) ) ) |
| 26 | 25 | rexbidva | |- ( ( x e. RR /\ k e. NN ) -> ( E. n e. ZZ ( n / k ) < x <-> E. n e. ZZ n < ( k x. x ) ) ) |
| 27 | 17 26 | mpbird | |- ( ( x e. RR /\ k e. NN ) -> E. n e. ZZ ( n / k ) < x ) |
| 28 | rabn0 | |- ( { n e. ZZ | ( n / k ) < x } =/= (/) <-> E. n e. ZZ ( n / k ) < x ) |
|
| 29 | 27 28 | sylibr | |- ( ( x e. RR /\ k e. NN ) -> { n e. ZZ | ( n / k ) < x } =/= (/) ) |
| 30 | 1 | neeq1i | |- ( T =/= (/) <-> { n e. ZZ | ( n / k ) < x } =/= (/) ) |
| 31 | 29 30 | sylibr | |- ( ( x e. RR /\ k e. NN ) -> T =/= (/) ) |
| 32 | 1 | reqabi | |- ( n e. T <-> ( n e. ZZ /\ ( n / k ) < x ) ) |
| 33 | 11 | ad2antlr | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> k e. RR ) |
| 34 | 33 20 12 | syl2anc | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( k x. x ) e. RR ) |
| 35 | ltle | |- ( ( n e. RR /\ ( k x. x ) e. RR ) -> ( n < ( k x. x ) -> n <_ ( k x. x ) ) ) |
|
| 36 | 19 34 35 | syl2anc | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( n < ( k x. x ) -> n <_ ( k x. x ) ) ) |
| 37 | 25 36 | sylbid | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. ZZ ) -> ( ( n / k ) < x -> n <_ ( k x. x ) ) ) |
| 38 | 37 | impr | |- ( ( ( x e. RR /\ k e. NN ) /\ ( n e. ZZ /\ ( n / k ) < x ) ) -> n <_ ( k x. x ) ) |
| 39 | 32 38 | sylan2b | |- ( ( ( x e. RR /\ k e. NN ) /\ n e. T ) -> n <_ ( k x. x ) ) |
| 40 | 39 | ralrimiva | |- ( ( x e. RR /\ k e. NN ) -> A. n e. T n <_ ( k x. x ) ) |
| 41 | breq2 | |- ( y = ( k x. x ) -> ( n <_ y <-> n <_ ( k x. x ) ) ) |
|
| 42 | 41 | ralbidv | |- ( y = ( k x. x ) -> ( A. n e. T n <_ y <-> A. n e. T n <_ ( k x. x ) ) ) |
| 43 | 42 | rspcev | |- ( ( ( k x. x ) e. RR /\ A. n e. T n <_ ( k x. x ) ) -> E. y e. RR A. n e. T n <_ y ) |
| 44 | 14 40 43 | syl2anc | |- ( ( x e. RR /\ k e. NN ) -> E. y e. RR A. n e. T n <_ y ) |
| 45 | suprzcl | |- ( ( T C_ ZZ /\ T =/= (/) /\ E. y e. RR A. n e. T n <_ y ) -> sup ( T , RR , < ) e. T ) |
|
| 46 | 10 31 44 45 | syl3anc | |- ( ( x e. RR /\ k e. NN ) -> sup ( T , RR , < ) e. T ) |
| 47 | 9 46 | sselid | |- ( ( x e. RR /\ k e. NN ) -> sup ( T , RR , < ) e. ZZ ) |
| 48 | znq | |- ( ( sup ( T , RR , < ) e. ZZ /\ k e. NN ) -> ( sup ( T , RR , < ) / k ) e. QQ ) |
|
| 49 | 47 48 | sylancom | |- ( ( x e. RR /\ k e. NN ) -> ( sup ( T , RR , < ) / k ) e. QQ ) |
| 50 | eqid | |- ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) = ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) |
|
| 51 | 49 50 | fmptd | |- ( x e. RR -> ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) : NN --> QQ ) |
| 52 | 4 3 | elmap | |- ( ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) e. ( QQ ^m NN ) <-> ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) : NN --> QQ ) |
| 53 | 51 52 | sylibr | |- ( x e. RR -> ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) e. ( QQ ^m NN ) ) |
| 54 | 7 53 | eqeltrd | |- ( x e. RR -> ( F ` x ) e. ( QQ ^m NN ) ) |