This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005) (Revised by Mario Carneiro, 6-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suprleub | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. RR ) -> ( sup ( A , RR , < ) <_ B <-> A. z e. A z <_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suprnub | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. RR ) -> ( -. B < sup ( A , RR , < ) <-> A. w e. A -. B < w ) ) |
|
| 2 | suprcl | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) -> sup ( A , RR , < ) e. RR ) |
|
| 3 | lenlt | |- ( ( sup ( A , RR , < ) e. RR /\ B e. RR ) -> ( sup ( A , RR , < ) <_ B <-> -. B < sup ( A , RR , < ) ) ) |
|
| 4 | 2 3 | sylan | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. RR ) -> ( sup ( A , RR , < ) <_ B <-> -. B < sup ( A , RR , < ) ) ) |
| 5 | simpl1 | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. RR ) -> A C_ RR ) |
|
| 6 | 5 | sselda | |- ( ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. RR ) /\ w e. A ) -> w e. RR ) |
| 7 | simplr | |- ( ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. RR ) /\ w e. A ) -> B e. RR ) |
|
| 8 | 6 7 | lenltd | |- ( ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. RR ) /\ w e. A ) -> ( w <_ B <-> -. B < w ) ) |
| 9 | 8 | ralbidva | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. RR ) -> ( A. w e. A w <_ B <-> A. w e. A -. B < w ) ) |
| 10 | 1 4 9 | 3bitr4d | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. RR ) -> ( sup ( A , RR , < ) <_ B <-> A. w e. A w <_ B ) ) |
| 11 | breq1 | |- ( w = z -> ( w <_ B <-> z <_ B ) ) |
|
| 12 | 11 | cbvralvw | |- ( A. w e. A w <_ B <-> A. z e. A z <_ B ) |
| 13 | 10 12 | bitrdi | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. RR ) -> ( sup ( A , RR , < ) <_ B <-> A. z e. A z <_ B ) ) |