This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribution of division over addition. (Contributed by NM, 31-Jul-2004) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divdir | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A + B ) / C ) = ( ( A / C ) + ( B / C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> A e. CC ) |
|
| 2 | simp2 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> B e. CC ) |
|
| 3 | reccl | |- ( ( C e. CC /\ C =/= 0 ) -> ( 1 / C ) e. CC ) |
|
| 4 | 3 | 3ad2ant3 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( 1 / C ) e. CC ) |
| 5 | 1 2 4 | adddird | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A + B ) x. ( 1 / C ) ) = ( ( A x. ( 1 / C ) ) + ( B x. ( 1 / C ) ) ) ) |
| 6 | 1 2 | addcld | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A + B ) e. CC ) |
| 7 | simp3l | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> C e. CC ) |
|
| 8 | simp3r | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> C =/= 0 ) |
|
| 9 | divrec | |- ( ( ( A + B ) e. CC /\ C e. CC /\ C =/= 0 ) -> ( ( A + B ) / C ) = ( ( A + B ) x. ( 1 / C ) ) ) |
|
| 10 | 6 7 8 9 | syl3anc | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A + B ) / C ) = ( ( A + B ) x. ( 1 / C ) ) ) |
| 11 | divrec | |- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) -> ( A / C ) = ( A x. ( 1 / C ) ) ) |
|
| 12 | 1 7 8 11 | syl3anc | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A / C ) = ( A x. ( 1 / C ) ) ) |
| 13 | divrec | |- ( ( B e. CC /\ C e. CC /\ C =/= 0 ) -> ( B / C ) = ( B x. ( 1 / C ) ) ) |
|
| 14 | 2 7 8 13 | syl3anc | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( B / C ) = ( B x. ( 1 / C ) ) ) |
| 15 | 12 14 | oveq12d | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) + ( B / C ) ) = ( ( A x. ( 1 / C ) ) + ( B x. ( 1 / C ) ) ) ) |
| 16 | 5 10 15 | 3eqtr4d | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A + B ) / C ) = ( ( A / C ) + ( B / C ) ) ) |