This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reciprocal swap in a 'less than' relation. (Contributed by NM, 24-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltrec1 | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( 1 / A ) < B <-> ( 1 / B ) < A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gt0ne0 | |- ( ( A e. RR /\ 0 < A ) -> A =/= 0 ) |
|
| 2 | rereccl | |- ( ( A e. RR /\ A =/= 0 ) -> ( 1 / A ) e. RR ) |
|
| 3 | 1 2 | syldan | |- ( ( A e. RR /\ 0 < A ) -> ( 1 / A ) e. RR ) |
| 4 | recgt0 | |- ( ( A e. RR /\ 0 < A ) -> 0 < ( 1 / A ) ) |
|
| 5 | 3 4 | jca | |- ( ( A e. RR /\ 0 < A ) -> ( ( 1 / A ) e. RR /\ 0 < ( 1 / A ) ) ) |
| 6 | ltrec | |- ( ( ( ( 1 / A ) e. RR /\ 0 < ( 1 / A ) ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( 1 / A ) < B <-> ( 1 / B ) < ( 1 / ( 1 / A ) ) ) ) |
|
| 7 | 5 6 | sylan | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( 1 / A ) < B <-> ( 1 / B ) < ( 1 / ( 1 / A ) ) ) ) |
| 8 | recn | |- ( A e. RR -> A e. CC ) |
|
| 9 | recrec | |- ( ( A e. CC /\ A =/= 0 ) -> ( 1 / ( 1 / A ) ) = A ) |
|
| 10 | 8 9 | sylan | |- ( ( A e. RR /\ A =/= 0 ) -> ( 1 / ( 1 / A ) ) = A ) |
| 11 | 1 10 | syldan | |- ( ( A e. RR /\ 0 < A ) -> ( 1 / ( 1 / A ) ) = A ) |
| 12 | 11 | adantr | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( 1 / ( 1 / A ) ) = A ) |
| 13 | 12 | breq2d | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( 1 / B ) < ( 1 / ( 1 / A ) ) <-> ( 1 / B ) < A ) ) |
| 14 | 7 13 | bitrd | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( 1 / A ) < B <-> ( 1 / B ) < A ) ) |