This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpnnen1 . (Contributed by Mario Carneiro, 12-May-2013) (Revised by NM, 15-Aug-2021) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rpnnen1lem.1 | |- T = { n e. ZZ | ( n / k ) < x } |
|
| rpnnen1lem.2 | |- F = ( x e. RR |-> ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ) |
||
| rpnnen1lem.n | |- NN e. _V |
||
| rpnnen1lem.q | |- QQ e. _V |
||
| Assertion | rpnnen1lem6 | |- RR ~<_ ( QQ ^m NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen1lem.1 | |- T = { n e. ZZ | ( n / k ) < x } |
|
| 2 | rpnnen1lem.2 | |- F = ( x e. RR |-> ( k e. NN |-> ( sup ( T , RR , < ) / k ) ) ) |
|
| 3 | rpnnen1lem.n | |- NN e. _V |
|
| 4 | rpnnen1lem.q | |- QQ e. _V |
|
| 5 | ovex | |- ( QQ ^m NN ) e. _V |
|
| 6 | 1 2 3 4 | rpnnen1lem1 | |- ( x e. RR -> ( F ` x ) e. ( QQ ^m NN ) ) |
| 7 | rneq | |- ( ( F ` x ) = ( F ` y ) -> ran ( F ` x ) = ran ( F ` y ) ) |
|
| 8 | 7 | supeq1d | |- ( ( F ` x ) = ( F ` y ) -> sup ( ran ( F ` x ) , RR , < ) = sup ( ran ( F ` y ) , RR , < ) ) |
| 9 | 1 2 3 4 | rpnnen1lem5 | |- ( x e. RR -> sup ( ran ( F ` x ) , RR , < ) = x ) |
| 10 | fveq2 | |- ( x = y -> ( F ` x ) = ( F ` y ) ) |
|
| 11 | 10 | rneqd | |- ( x = y -> ran ( F ` x ) = ran ( F ` y ) ) |
| 12 | 11 | supeq1d | |- ( x = y -> sup ( ran ( F ` x ) , RR , < ) = sup ( ran ( F ` y ) , RR , < ) ) |
| 13 | id | |- ( x = y -> x = y ) |
|
| 14 | 12 13 | eqeq12d | |- ( x = y -> ( sup ( ran ( F ` x ) , RR , < ) = x <-> sup ( ran ( F ` y ) , RR , < ) = y ) ) |
| 15 | 14 9 | vtoclga | |- ( y e. RR -> sup ( ran ( F ` y ) , RR , < ) = y ) |
| 16 | 9 15 | eqeqan12d | |- ( ( x e. RR /\ y e. RR ) -> ( sup ( ran ( F ` x ) , RR , < ) = sup ( ran ( F ` y ) , RR , < ) <-> x = y ) ) |
| 17 | 8 16 | imbitrid | |- ( ( x e. RR /\ y e. RR ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 18 | 17 10 | impbid1 | |- ( ( x e. RR /\ y e. RR ) -> ( ( F ` x ) = ( F ` y ) <-> x = y ) ) |
| 19 | 6 18 | dom2 | |- ( ( QQ ^m NN ) e. _V -> RR ~<_ ( QQ ^m NN ) ) |
| 20 | 5 19 | ax-mp | |- RR ~<_ ( QQ ^m NN ) |