This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any real number can be sandwiched between two integers. Exercise 2 of Apostol p. 28. (Contributed by NM, 10-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | btwnz | |- ( A e. RR -> ( E. x e. ZZ x < A /\ E. y e. ZZ A < y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcl | |- ( A e. RR -> -u A e. RR ) |
|
| 2 | arch | |- ( -u A e. RR -> E. z e. NN -u A < z ) |
|
| 3 | 1 2 | syl | |- ( A e. RR -> E. z e. NN -u A < z ) |
| 4 | nnre | |- ( z e. NN -> z e. RR ) |
|
| 5 | ltnegcon1 | |- ( ( A e. RR /\ z e. RR ) -> ( -u A < z <-> -u z < A ) ) |
|
| 6 | 5 | ex | |- ( A e. RR -> ( z e. RR -> ( -u A < z <-> -u z < A ) ) ) |
| 7 | 4 6 | syl5 | |- ( A e. RR -> ( z e. NN -> ( -u A < z <-> -u z < A ) ) ) |
| 8 | 7 | pm5.32d | |- ( A e. RR -> ( ( z e. NN /\ -u A < z ) <-> ( z e. NN /\ -u z < A ) ) ) |
| 9 | nnnegz | |- ( z e. NN -> -u z e. ZZ ) |
|
| 10 | breq1 | |- ( x = -u z -> ( x < A <-> -u z < A ) ) |
|
| 11 | 10 | rspcev | |- ( ( -u z e. ZZ /\ -u z < A ) -> E. x e. ZZ x < A ) |
| 12 | 9 11 | sylan | |- ( ( z e. NN /\ -u z < A ) -> E. x e. ZZ x < A ) |
| 13 | 8 12 | biimtrdi | |- ( A e. RR -> ( ( z e. NN /\ -u A < z ) -> E. x e. ZZ x < A ) ) |
| 14 | 13 | expd | |- ( A e. RR -> ( z e. NN -> ( -u A < z -> E. x e. ZZ x < A ) ) ) |
| 15 | 14 | rexlimdv | |- ( A e. RR -> ( E. z e. NN -u A < z -> E. x e. ZZ x < A ) ) |
| 16 | 3 15 | mpd | |- ( A e. RR -> E. x e. ZZ x < A ) |
| 17 | arch | |- ( A e. RR -> E. y e. NN A < y ) |
|
| 18 | nnz | |- ( y e. NN -> y e. ZZ ) |
|
| 19 | 18 | anim1i | |- ( ( y e. NN /\ A < y ) -> ( y e. ZZ /\ A < y ) ) |
| 20 | 19 | reximi2 | |- ( E. y e. NN A < y -> E. y e. ZZ A < y ) |
| 21 | 17 20 | syl | |- ( A e. RR -> E. y e. ZZ A < y ) |
| 22 | 16 21 | jca | |- ( A e. RR -> ( E. x e. ZZ x < A /\ E. y e. ZZ A < y ) ) |