This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton composite recovers the initial symbol. (Contributed by Stefan O'Rear, 16-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | gsumwcl.b | |- B = ( Base ` G ) |
|
| Assertion | gsumws1 | |- ( S e. B -> ( G gsum <" S "> ) = S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumwcl.b | |- B = ( Base ` G ) |
|
| 2 | s1val | |- ( S e. B -> <" S "> = { <. 0 , S >. } ) |
|
| 3 | 2 | oveq2d | |- ( S e. B -> ( G gsum <" S "> ) = ( G gsum { <. 0 , S >. } ) ) |
| 4 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 5 | elfvdm | |- ( S e. ( Base ` G ) -> G e. dom Base ) |
|
| 6 | 5 1 | eleq2s | |- ( S e. B -> G e. dom Base ) |
| 7 | 0nn0 | |- 0 e. NN0 |
|
| 8 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 9 | 7 8 | eleqtri | |- 0 e. ( ZZ>= ` 0 ) |
| 10 | 9 | a1i | |- ( S e. B -> 0 e. ( ZZ>= ` 0 ) ) |
| 11 | 0z | |- 0 e. ZZ |
|
| 12 | f1osng | |- ( ( 0 e. ZZ /\ S e. B ) -> { <. 0 , S >. } : { 0 } -1-1-onto-> { S } ) |
|
| 13 | 11 12 | mpan | |- ( S e. B -> { <. 0 , S >. } : { 0 } -1-1-onto-> { S } ) |
| 14 | f1of | |- ( { <. 0 , S >. } : { 0 } -1-1-onto-> { S } -> { <. 0 , S >. } : { 0 } --> { S } ) |
|
| 15 | 13 14 | syl | |- ( S e. B -> { <. 0 , S >. } : { 0 } --> { S } ) |
| 16 | snssi | |- ( S e. B -> { S } C_ B ) |
|
| 17 | 15 16 | fssd | |- ( S e. B -> { <. 0 , S >. } : { 0 } --> B ) |
| 18 | fz0sn | |- ( 0 ... 0 ) = { 0 } |
|
| 19 | 18 | feq2i | |- ( { <. 0 , S >. } : ( 0 ... 0 ) --> B <-> { <. 0 , S >. } : { 0 } --> B ) |
| 20 | 17 19 | sylibr | |- ( S e. B -> { <. 0 , S >. } : ( 0 ... 0 ) --> B ) |
| 21 | 1 4 6 10 20 | gsumval2 | |- ( S e. B -> ( G gsum { <. 0 , S >. } ) = ( seq 0 ( ( +g ` G ) , { <. 0 , S >. } ) ` 0 ) ) |
| 22 | fvsng | |- ( ( 0 e. ZZ /\ S e. B ) -> ( { <. 0 , S >. } ` 0 ) = S ) |
|
| 23 | 11 22 | mpan | |- ( S e. B -> ( { <. 0 , S >. } ` 0 ) = S ) |
| 24 | 11 23 | seq1i | |- ( S e. B -> ( seq 0 ( ( +g ` G ) , { <. 0 , S >. } ) ` 0 ) = S ) |
| 25 | 3 21 24 | 3eqtrd | |- ( S e. B -> ( G gsum <" S "> ) = S ) |