This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 29-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzoss2 | |- ( N e. ( ZZ>= ` K ) -> ( M ..^ K ) C_ ( M ..^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 | |- ( N e. ( ZZ>= ` K ) -> K e. ZZ ) |
|
| 2 | peano2zm | |- ( K e. ZZ -> ( K - 1 ) e. ZZ ) |
|
| 3 | 1 2 | syl | |- ( N e. ( ZZ>= ` K ) -> ( K - 1 ) e. ZZ ) |
| 4 | 1zzd | |- ( N e. ( ZZ>= ` K ) -> 1 e. ZZ ) |
|
| 5 | id | |- ( N e. ( ZZ>= ` K ) -> N e. ( ZZ>= ` K ) ) |
|
| 6 | 1 | zcnd | |- ( N e. ( ZZ>= ` K ) -> K e. CC ) |
| 7 | ax-1cn | |- 1 e. CC |
|
| 8 | npcan | |- ( ( K e. CC /\ 1 e. CC ) -> ( ( K - 1 ) + 1 ) = K ) |
|
| 9 | 6 7 8 | sylancl | |- ( N e. ( ZZ>= ` K ) -> ( ( K - 1 ) + 1 ) = K ) |
| 10 | 9 | fveq2d | |- ( N e. ( ZZ>= ` K ) -> ( ZZ>= ` ( ( K - 1 ) + 1 ) ) = ( ZZ>= ` K ) ) |
| 11 | 5 10 | eleqtrrd | |- ( N e. ( ZZ>= ` K ) -> N e. ( ZZ>= ` ( ( K - 1 ) + 1 ) ) ) |
| 12 | eluzsub | |- ( ( ( K - 1 ) e. ZZ /\ 1 e. ZZ /\ N e. ( ZZ>= ` ( ( K - 1 ) + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` ( K - 1 ) ) ) |
|
| 13 | 3 4 11 12 | syl3anc | |- ( N e. ( ZZ>= ` K ) -> ( N - 1 ) e. ( ZZ>= ` ( K - 1 ) ) ) |
| 14 | fzss2 | |- ( ( N - 1 ) e. ( ZZ>= ` ( K - 1 ) ) -> ( M ... ( K - 1 ) ) C_ ( M ... ( N - 1 ) ) ) |
|
| 15 | 13 14 | syl | |- ( N e. ( ZZ>= ` K ) -> ( M ... ( K - 1 ) ) C_ ( M ... ( N - 1 ) ) ) |
| 16 | fzoval | |- ( K e. ZZ -> ( M ..^ K ) = ( M ... ( K - 1 ) ) ) |
|
| 17 | 1 16 | syl | |- ( N e. ( ZZ>= ` K ) -> ( M ..^ K ) = ( M ... ( K - 1 ) ) ) |
| 18 | eluzelz | |- ( N e. ( ZZ>= ` K ) -> N e. ZZ ) |
|
| 19 | fzoval | |- ( N e. ZZ -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
|
| 20 | 18 19 | syl | |- ( N e. ( ZZ>= ` K ) -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
| 21 | 15 17 20 | 3sstr4d | |- ( N e. ( ZZ>= ` K ) -> ( M ..^ K ) C_ ( M ..^ N ) ) |