This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A zero-based sequence is a word. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iswrdi | |- ( W : ( 0 ..^ L ) --> S -> W e. Word S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( l = L -> ( 0 ..^ l ) = ( 0 ..^ L ) ) |
|
| 2 | 1 | feq2d | |- ( l = L -> ( W : ( 0 ..^ l ) --> S <-> W : ( 0 ..^ L ) --> S ) ) |
| 3 | 2 | rspcev | |- ( ( L e. NN0 /\ W : ( 0 ..^ L ) --> S ) -> E. l e. NN0 W : ( 0 ..^ l ) --> S ) |
| 4 | 0nn0 | |- 0 e. NN0 |
|
| 5 | fzo0n0 | |- ( ( 0 ..^ L ) =/= (/) <-> L e. NN ) |
|
| 6 | nnnn0 | |- ( L e. NN -> L e. NN0 ) |
|
| 7 | 5 6 | sylbi | |- ( ( 0 ..^ L ) =/= (/) -> L e. NN0 ) |
| 8 | 7 | necon1bi | |- ( -. L e. NN0 -> ( 0 ..^ L ) = (/) ) |
| 9 | fzo0 | |- ( 0 ..^ 0 ) = (/) |
|
| 10 | 8 9 | eqtr4di | |- ( -. L e. NN0 -> ( 0 ..^ L ) = ( 0 ..^ 0 ) ) |
| 11 | 10 | feq2d | |- ( -. L e. NN0 -> ( W : ( 0 ..^ L ) --> S <-> W : ( 0 ..^ 0 ) --> S ) ) |
| 12 | 11 | biimpa | |- ( ( -. L e. NN0 /\ W : ( 0 ..^ L ) --> S ) -> W : ( 0 ..^ 0 ) --> S ) |
| 13 | oveq2 | |- ( l = 0 -> ( 0 ..^ l ) = ( 0 ..^ 0 ) ) |
|
| 14 | 13 | feq2d | |- ( l = 0 -> ( W : ( 0 ..^ l ) --> S <-> W : ( 0 ..^ 0 ) --> S ) ) |
| 15 | 14 | rspcev | |- ( ( 0 e. NN0 /\ W : ( 0 ..^ 0 ) --> S ) -> E. l e. NN0 W : ( 0 ..^ l ) --> S ) |
| 16 | 4 12 15 | sylancr | |- ( ( -. L e. NN0 /\ W : ( 0 ..^ L ) --> S ) -> E. l e. NN0 W : ( 0 ..^ l ) --> S ) |
| 17 | 3 16 | pm2.61ian | |- ( W : ( 0 ..^ L ) --> S -> E. l e. NN0 W : ( 0 ..^ l ) --> S ) |
| 18 | iswrd | |- ( W e. Word S <-> E. l e. NN0 W : ( 0 ..^ l ) --> S ) |
|
| 19 | 17 18 | sylibr | |- ( W : ( 0 ..^ L ) --> S -> W e. Word S ) |