This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a point is moved by exactly one of two permutations, then it will be moved by their composite. (Contributed by Stefan O'Rear, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1omvdco3 | |- ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A /\ ( X e. dom ( F \ _I ) \/_ X e. dom ( G \ _I ) ) ) -> X e. dom ( ( F o. G ) \ _I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notbi | |- ( ( X e. dom ( F \ _I ) <-> X e. dom ( G \ _I ) ) <-> ( -. X e. dom ( F \ _I ) <-> -. X e. dom ( G \ _I ) ) ) |
|
| 2 | disjsn | |- ( ( dom ( F \ _I ) i^i { X } ) = (/) <-> -. X e. dom ( F \ _I ) ) |
|
| 3 | disj2 | |- ( ( dom ( F \ _I ) i^i { X } ) = (/) <-> dom ( F \ _I ) C_ ( _V \ { X } ) ) |
|
| 4 | 2 3 | bitr3i | |- ( -. X e. dom ( F \ _I ) <-> dom ( F \ _I ) C_ ( _V \ { X } ) ) |
| 5 | disjsn | |- ( ( dom ( G \ _I ) i^i { X } ) = (/) <-> -. X e. dom ( G \ _I ) ) |
|
| 6 | disj2 | |- ( ( dom ( G \ _I ) i^i { X } ) = (/) <-> dom ( G \ _I ) C_ ( _V \ { X } ) ) |
|
| 7 | 5 6 | bitr3i | |- ( -. X e. dom ( G \ _I ) <-> dom ( G \ _I ) C_ ( _V \ { X } ) ) |
| 8 | 4 7 | bibi12i | |- ( ( -. X e. dom ( F \ _I ) <-> -. X e. dom ( G \ _I ) ) <-> ( dom ( F \ _I ) C_ ( _V \ { X } ) <-> dom ( G \ _I ) C_ ( _V \ { X } ) ) ) |
| 9 | 1 8 | bitri | |- ( ( X e. dom ( F \ _I ) <-> X e. dom ( G \ _I ) ) <-> ( dom ( F \ _I ) C_ ( _V \ { X } ) <-> dom ( G \ _I ) C_ ( _V \ { X } ) ) ) |
| 10 | 9 | notbii | |- ( -. ( X e. dom ( F \ _I ) <-> X e. dom ( G \ _I ) ) <-> -. ( dom ( F \ _I ) C_ ( _V \ { X } ) <-> dom ( G \ _I ) C_ ( _V \ { X } ) ) ) |
| 11 | df-xor | |- ( ( X e. dom ( F \ _I ) \/_ X e. dom ( G \ _I ) ) <-> -. ( X e. dom ( F \ _I ) <-> X e. dom ( G \ _I ) ) ) |
|
| 12 | df-xor | |- ( ( dom ( F \ _I ) C_ ( _V \ { X } ) \/_ dom ( G \ _I ) C_ ( _V \ { X } ) ) <-> -. ( dom ( F \ _I ) C_ ( _V \ { X } ) <-> dom ( G \ _I ) C_ ( _V \ { X } ) ) ) |
|
| 13 | 10 11 12 | 3bitr4i | |- ( ( X e. dom ( F \ _I ) \/_ X e. dom ( G \ _I ) ) <-> ( dom ( F \ _I ) C_ ( _V \ { X } ) \/_ dom ( G \ _I ) C_ ( _V \ { X } ) ) ) |
| 14 | f1omvdco2 | |- ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A /\ ( dom ( F \ _I ) C_ ( _V \ { X } ) \/_ dom ( G \ _I ) C_ ( _V \ { X } ) ) ) -> -. dom ( ( F o. G ) \ _I ) C_ ( _V \ { X } ) ) |
|
| 15 | disj2 | |- ( ( dom ( ( F o. G ) \ _I ) i^i { X } ) = (/) <-> dom ( ( F o. G ) \ _I ) C_ ( _V \ { X } ) ) |
|
| 16 | disjsn | |- ( ( dom ( ( F o. G ) \ _I ) i^i { X } ) = (/) <-> -. X e. dom ( ( F o. G ) \ _I ) ) |
|
| 17 | 15 16 | bitr3i | |- ( dom ( ( F o. G ) \ _I ) C_ ( _V \ { X } ) <-> -. X e. dom ( ( F o. G ) \ _I ) ) |
| 18 | 17 | con2bii | |- ( X e. dom ( ( F o. G ) \ _I ) <-> -. dom ( ( F o. G ) \ _I ) C_ ( _V \ { X } ) ) |
| 19 | 14 18 | sylibr | |- ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A /\ ( dom ( F \ _I ) C_ ( _V \ { X } ) \/_ dom ( G \ _I ) C_ ( _V \ { X } ) ) ) -> X e. dom ( ( F o. G ) \ _I ) ) |
| 20 | 13 19 | syl3an3b | |- ( ( F : A -1-1-onto-> A /\ G : A -1-1-onto-> A /\ ( X e. dom ( F \ _I ) \/_ X e. dom ( G \ _I ) ) ) -> X e. dom ( ( F o. G ) \ _I ) ) |