This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the prefix extractor as a mapping. (Contributed by AV, 2-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfxmpt | |- ( ( S e. Word A /\ L e. ( 0 ... ( # ` S ) ) ) -> ( S prefix L ) = ( x e. ( 0 ..^ L ) |-> ( S ` x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfznn0 | |- ( L e. ( 0 ... ( # ` S ) ) -> L e. NN0 ) |
|
| 2 | pfxval | |- ( ( S e. Word A /\ L e. NN0 ) -> ( S prefix L ) = ( S substr <. 0 , L >. ) ) |
|
| 3 | 1 2 | sylan2 | |- ( ( S e. Word A /\ L e. ( 0 ... ( # ` S ) ) ) -> ( S prefix L ) = ( S substr <. 0 , L >. ) ) |
| 4 | simpl | |- ( ( S e. Word A /\ L e. ( 0 ... ( # ` S ) ) ) -> S e. Word A ) |
|
| 5 | 1 | adantl | |- ( ( S e. Word A /\ L e. ( 0 ... ( # ` S ) ) ) -> L e. NN0 ) |
| 6 | 0elfz | |- ( L e. NN0 -> 0 e. ( 0 ... L ) ) |
|
| 7 | 5 6 | syl | |- ( ( S e. Word A /\ L e. ( 0 ... ( # ` S ) ) ) -> 0 e. ( 0 ... L ) ) |
| 8 | simpr | |- ( ( S e. Word A /\ L e. ( 0 ... ( # ` S ) ) ) -> L e. ( 0 ... ( # ` S ) ) ) |
|
| 9 | swrdval2 | |- ( ( S e. Word A /\ 0 e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` S ) ) ) -> ( S substr <. 0 , L >. ) = ( x e. ( 0 ..^ ( L - 0 ) ) |-> ( S ` ( x + 0 ) ) ) ) |
|
| 10 | 4 7 8 9 | syl3anc | |- ( ( S e. Word A /\ L e. ( 0 ... ( # ` S ) ) ) -> ( S substr <. 0 , L >. ) = ( x e. ( 0 ..^ ( L - 0 ) ) |-> ( S ` ( x + 0 ) ) ) ) |
| 11 | nn0cn | |- ( L e. NN0 -> L e. CC ) |
|
| 12 | 11 | subid1d | |- ( L e. NN0 -> ( L - 0 ) = L ) |
| 13 | 1 12 | syl | |- ( L e. ( 0 ... ( # ` S ) ) -> ( L - 0 ) = L ) |
| 14 | 13 | oveq2d | |- ( L e. ( 0 ... ( # ` S ) ) -> ( 0 ..^ ( L - 0 ) ) = ( 0 ..^ L ) ) |
| 15 | 14 | adantl | |- ( ( S e. Word A /\ L e. ( 0 ... ( # ` S ) ) ) -> ( 0 ..^ ( L - 0 ) ) = ( 0 ..^ L ) ) |
| 16 | elfzonn0 | |- ( x e. ( 0 ..^ ( L - 0 ) ) -> x e. NN0 ) |
|
| 17 | nn0cn | |- ( x e. NN0 -> x e. CC ) |
|
| 18 | 17 | addridd | |- ( x e. NN0 -> ( x + 0 ) = x ) |
| 19 | 16 18 | syl | |- ( x e. ( 0 ..^ ( L - 0 ) ) -> ( x + 0 ) = x ) |
| 20 | 19 | fveq2d | |- ( x e. ( 0 ..^ ( L - 0 ) ) -> ( S ` ( x + 0 ) ) = ( S ` x ) ) |
| 21 | 20 | adantl | |- ( ( ( S e. Word A /\ L e. ( 0 ... ( # ` S ) ) ) /\ x e. ( 0 ..^ ( L - 0 ) ) ) -> ( S ` ( x + 0 ) ) = ( S ` x ) ) |
| 22 | 15 21 | mpteq12dva | |- ( ( S e. Word A /\ L e. ( 0 ... ( # ` S ) ) ) -> ( x e. ( 0 ..^ ( L - 0 ) ) |-> ( S ` ( x + 0 ) ) ) = ( x e. ( 0 ..^ L ) |-> ( S ` x ) ) ) |
| 23 | 3 10 22 | 3eqtrd | |- ( ( S e. Word A /\ L e. ( 0 ... ( # ` S ) ) ) -> ( S prefix L ) = ( x e. ( 0 ..^ L ) |-> ( S ` x ) ) ) |