This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two possibilities for a number one greater than a number in a half-open range. (Contributed by Stefan O'Rear, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzostep1 | |- ( A e. ( B ..^ C ) -> ( ( A + 1 ) e. ( B ..^ C ) \/ ( A + 1 ) = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoel1 | |- ( A e. ( B ..^ C ) -> B e. ZZ ) |
|
| 2 | uzid | |- ( B e. ZZ -> B e. ( ZZ>= ` B ) ) |
|
| 3 | peano2uz | |- ( B e. ( ZZ>= ` B ) -> ( B + 1 ) e. ( ZZ>= ` B ) ) |
|
| 4 | fzoss1 | |- ( ( B + 1 ) e. ( ZZ>= ` B ) -> ( ( B + 1 ) ..^ ( C + 1 ) ) C_ ( B ..^ ( C + 1 ) ) ) |
|
| 5 | 1 2 3 4 | 4syl | |- ( A e. ( B ..^ C ) -> ( ( B + 1 ) ..^ ( C + 1 ) ) C_ ( B ..^ ( C + 1 ) ) ) |
| 6 | 1z | |- 1 e. ZZ |
|
| 7 | fzoaddel | |- ( ( A e. ( B ..^ C ) /\ 1 e. ZZ ) -> ( A + 1 ) e. ( ( B + 1 ) ..^ ( C + 1 ) ) ) |
|
| 8 | 6 7 | mpan2 | |- ( A e. ( B ..^ C ) -> ( A + 1 ) e. ( ( B + 1 ) ..^ ( C + 1 ) ) ) |
| 9 | 5 8 | sseldd | |- ( A e. ( B ..^ C ) -> ( A + 1 ) e. ( B ..^ ( C + 1 ) ) ) |
| 10 | elfzoel2 | |- ( A e. ( B ..^ C ) -> C e. ZZ ) |
|
| 11 | elfzolt3 | |- ( A e. ( B ..^ C ) -> B < C ) |
|
| 12 | zre | |- ( B e. ZZ -> B e. RR ) |
|
| 13 | zre | |- ( C e. ZZ -> C e. RR ) |
|
| 14 | ltle | |- ( ( B e. RR /\ C e. RR ) -> ( B < C -> B <_ C ) ) |
|
| 15 | 12 13 14 | syl2an | |- ( ( B e. ZZ /\ C e. ZZ ) -> ( B < C -> B <_ C ) ) |
| 16 | 1 10 15 | syl2anc | |- ( A e. ( B ..^ C ) -> ( B < C -> B <_ C ) ) |
| 17 | 11 16 | mpd | |- ( A e. ( B ..^ C ) -> B <_ C ) |
| 18 | eluz2 | |- ( C e. ( ZZ>= ` B ) <-> ( B e. ZZ /\ C e. ZZ /\ B <_ C ) ) |
|
| 19 | 1 10 17 18 | syl3anbrc | |- ( A e. ( B ..^ C ) -> C e. ( ZZ>= ` B ) ) |
| 20 | fzosplitsni | |- ( C e. ( ZZ>= ` B ) -> ( ( A + 1 ) e. ( B ..^ ( C + 1 ) ) <-> ( ( A + 1 ) e. ( B ..^ C ) \/ ( A + 1 ) = C ) ) ) |
|
| 21 | 19 20 | syl | |- ( A e. ( B ..^ C ) -> ( ( A + 1 ) e. ( B ..^ ( C + 1 ) ) <-> ( ( A + 1 ) e. ( B ..^ C ) \/ ( A + 1 ) = C ) ) ) |
| 22 | 9 21 | mpbid | |- ( A e. ( B ..^ C ) -> ( ( A + 1 ) e. ( B ..^ C ) \/ ( A + 1 ) = C ) ) |