This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer divides another iff its absolute value does. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absdvdsb | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> ( abs ` M ) || N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | |- ( ( abs ` M ) = M -> ( ( abs ` M ) || N <-> M || N ) ) |
|
| 2 | 1 | bicomd | |- ( ( abs ` M ) = M -> ( M || N <-> ( abs ` M ) || N ) ) |
| 3 | 2 | a1i | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) = M -> ( M || N <-> ( abs ` M ) || N ) ) ) |
| 4 | negdvdsb | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> -u M || N ) ) |
|
| 5 | breq1 | |- ( ( abs ` M ) = -u M -> ( ( abs ` M ) || N <-> -u M || N ) ) |
|
| 6 | 5 | bicomd | |- ( ( abs ` M ) = -u M -> ( -u M || N <-> ( abs ` M ) || N ) ) |
| 7 | 4 6 | sylan9bb | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( abs ` M ) = -u M ) -> ( M || N <-> ( abs ` M ) || N ) ) |
| 8 | 7 | ex | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) = -u M -> ( M || N <-> ( abs ` M ) || N ) ) ) |
| 9 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 10 | 9 | absord | |- ( M e. ZZ -> ( ( abs ` M ) = M \/ ( abs ` M ) = -u M ) ) |
| 11 | 10 | adantr | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) = M \/ ( abs ` M ) = -u M ) ) |
| 12 | 3 8 11 | mpjaod | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> ( abs ` M ) || N ) ) |