This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the prime power function at zero. (Contributed by Mario Carneiro, 3-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pc0 | |- ( P e. Prime -> ( P pCnt 0 ) = +oo ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z | |- 0 e. ZZ |
|
| 2 | zq | |- ( 0 e. ZZ -> 0 e. QQ ) |
|
| 3 | 1 2 | ax-mp | |- 0 e. QQ |
| 4 | iftrue | |- ( r = 0 -> if ( r = 0 , +oo , ( iota z E. x e. ZZ E. y e. NN ( r = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) ) ) ) = +oo ) |
|
| 5 | 4 | adantl | |- ( ( p = P /\ r = 0 ) -> if ( r = 0 , +oo , ( iota z E. x e. ZZ E. y e. NN ( r = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) ) ) ) = +oo ) |
| 6 | df-pc | |- pCnt = ( p e. Prime , r e. QQ |-> if ( r = 0 , +oo , ( iota z E. x e. ZZ E. y e. NN ( r = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) ) ) ) ) |
|
| 7 | pnfex | |- +oo e. _V |
|
| 8 | 5 6 7 | ovmpoa | |- ( ( P e. Prime /\ 0 e. QQ ) -> ( P pCnt 0 ) = +oo ) |
| 9 | 3 8 | mpan2 | |- ( P e. Prime -> ( P pCnt 0 ) = +oo ) |