This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The prime count increases under the divisibility relation. (Contributed by Mario Carneiro, 13-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcdvdstr | |- ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) -> ( P pCnt A ) <_ ( P pCnt B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z | |- 0 e. ZZ |
|
| 2 | zq | |- ( 0 e. ZZ -> 0 e. QQ ) |
|
| 3 | 1 2 | ax-mp | |- 0 e. QQ |
| 4 | pcxcl | |- ( ( P e. Prime /\ 0 e. QQ ) -> ( P pCnt 0 ) e. RR* ) |
|
| 5 | 3 4 | mpan2 | |- ( P e. Prime -> ( P pCnt 0 ) e. RR* ) |
| 6 | 5 | xrleidd | |- ( P e. Prime -> ( P pCnt 0 ) <_ ( P pCnt 0 ) ) |
| 7 | 6 | ad2antrr | |- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A = 0 ) -> ( P pCnt 0 ) <_ ( P pCnt 0 ) ) |
| 8 | simpr | |- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A = 0 ) -> A = 0 ) |
|
| 9 | 8 | oveq2d | |- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A = 0 ) -> ( P pCnt A ) = ( P pCnt 0 ) ) |
| 10 | simplr3 | |- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A = 0 ) -> A || B ) |
|
| 11 | 8 10 | eqbrtrrd | |- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A = 0 ) -> 0 || B ) |
| 12 | simplr2 | |- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A = 0 ) -> B e. ZZ ) |
|
| 13 | 0dvds | |- ( B e. ZZ -> ( 0 || B <-> B = 0 ) ) |
|
| 14 | 12 13 | syl | |- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A = 0 ) -> ( 0 || B <-> B = 0 ) ) |
| 15 | 11 14 | mpbid | |- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A = 0 ) -> B = 0 ) |
| 16 | 15 | oveq2d | |- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A = 0 ) -> ( P pCnt B ) = ( P pCnt 0 ) ) |
| 17 | 7 9 16 | 3brtr4d | |- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A = 0 ) -> ( P pCnt A ) <_ ( P pCnt B ) ) |
| 18 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 19 | 18 | ad2antrr | |- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> P e. NN ) |
| 20 | simpll | |- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> P e. Prime ) |
|
| 21 | simplr1 | |- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> A e. ZZ ) |
|
| 22 | simpr | |- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> A =/= 0 ) |
|
| 23 | pczcl | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) ) -> ( P pCnt A ) e. NN0 ) |
|
| 24 | 20 21 22 23 | syl12anc | |- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> ( P pCnt A ) e. NN0 ) |
| 25 | 19 24 | nnexpcld | |- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> ( P ^ ( P pCnt A ) ) e. NN ) |
| 26 | 25 | nnzd | |- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> ( P ^ ( P pCnt A ) ) e. ZZ ) |
| 27 | simplr2 | |- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> B e. ZZ ) |
|
| 28 | pczdvds | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) ) -> ( P ^ ( P pCnt A ) ) || A ) |
|
| 29 | 20 21 22 28 | syl12anc | |- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> ( P ^ ( P pCnt A ) ) || A ) |
| 30 | simplr3 | |- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> A || B ) |
|
| 31 | 26 21 27 29 30 | dvdstrd | |- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> ( P ^ ( P pCnt A ) ) || B ) |
| 32 | pcdvdsb | |- ( ( P e. Prime /\ B e. ZZ /\ ( P pCnt A ) e. NN0 ) -> ( ( P pCnt A ) <_ ( P pCnt B ) <-> ( P ^ ( P pCnt A ) ) || B ) ) |
|
| 33 | 20 27 24 32 | syl3anc | |- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> ( ( P pCnt A ) <_ ( P pCnt B ) <-> ( P ^ ( P pCnt A ) ) || B ) ) |
| 34 | 31 33 | mpbird | |- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> ( P pCnt A ) <_ ( P pCnt B ) ) |
| 35 | 17 34 | pm2.61dane | |- ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) -> ( P pCnt A ) <_ ( P pCnt B ) ) |