This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the gcd operator. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcdcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. NN0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 | |- ( ( M = 0 /\ N = 0 ) -> ( M gcd N ) = ( 0 gcd 0 ) ) |
|
| 2 | gcd0val | |- ( 0 gcd 0 ) = 0 |
|
| 3 | 1 2 | eqtrdi | |- ( ( M = 0 /\ N = 0 ) -> ( M gcd N ) = 0 ) |
| 4 | 0nn0 | |- 0 e. NN0 |
|
| 5 | 3 4 | eqeltrdi | |- ( ( M = 0 /\ N = 0 ) -> ( M gcd N ) e. NN0 ) |
| 6 | 5 | adantl | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) e. NN0 ) |
| 7 | gcdn0cl | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) e. NN ) |
|
| 8 | 7 | nnnn0d | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) e. NN0 ) |
| 9 | 6 8 | pm2.61dan | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. NN0 ) |