This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The prime count of a GCD is the minimum of the prime counts of the arguments. (Contributed by Mario Carneiro, 3-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcgcd | |- ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) -> ( P pCnt ( A gcd B ) ) = if ( ( P pCnt A ) <_ ( P pCnt B ) , ( P pCnt A ) , ( P pCnt B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcgcd1 | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( P pCnt A ) <_ ( P pCnt B ) ) -> ( P pCnt ( A gcd B ) ) = ( P pCnt A ) ) |
|
| 2 | iftrue | |- ( ( P pCnt A ) <_ ( P pCnt B ) -> if ( ( P pCnt A ) <_ ( P pCnt B ) , ( P pCnt A ) , ( P pCnt B ) ) = ( P pCnt A ) ) |
|
| 3 | 2 | adantl | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( P pCnt A ) <_ ( P pCnt B ) ) -> if ( ( P pCnt A ) <_ ( P pCnt B ) , ( P pCnt A ) , ( P pCnt B ) ) = ( P pCnt A ) ) |
| 4 | 1 3 | eqtr4d | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( P pCnt A ) <_ ( P pCnt B ) ) -> ( P pCnt ( A gcd B ) ) = if ( ( P pCnt A ) <_ ( P pCnt B ) , ( P pCnt A ) , ( P pCnt B ) ) ) |
| 5 | gcdcom | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) = ( B gcd A ) ) |
|
| 6 | 5 | 3adant1 | |- ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) = ( B gcd A ) ) |
| 7 | 6 | adantr | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ -. ( P pCnt A ) <_ ( P pCnt B ) ) -> ( A gcd B ) = ( B gcd A ) ) |
| 8 | 7 | oveq2d | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ -. ( P pCnt A ) <_ ( P pCnt B ) ) -> ( P pCnt ( A gcd B ) ) = ( P pCnt ( B gcd A ) ) ) |
| 9 | iffalse | |- ( -. ( P pCnt A ) <_ ( P pCnt B ) -> if ( ( P pCnt A ) <_ ( P pCnt B ) , ( P pCnt A ) , ( P pCnt B ) ) = ( P pCnt B ) ) |
|
| 10 | 9 | adantl | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ -. ( P pCnt A ) <_ ( P pCnt B ) ) -> if ( ( P pCnt A ) <_ ( P pCnt B ) , ( P pCnt A ) , ( P pCnt B ) ) = ( P pCnt B ) ) |
| 11 | zq | |- ( A e. ZZ -> A e. QQ ) |
|
| 12 | pcxcl | |- ( ( P e. Prime /\ A e. QQ ) -> ( P pCnt A ) e. RR* ) |
|
| 13 | 11 12 | sylan2 | |- ( ( P e. Prime /\ A e. ZZ ) -> ( P pCnt A ) e. RR* ) |
| 14 | 13 | 3adant3 | |- ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) -> ( P pCnt A ) e. RR* ) |
| 15 | zq | |- ( B e. ZZ -> B e. QQ ) |
|
| 16 | pcxcl | |- ( ( P e. Prime /\ B e. QQ ) -> ( P pCnt B ) e. RR* ) |
|
| 17 | 15 16 | sylan2 | |- ( ( P e. Prime /\ B e. ZZ ) -> ( P pCnt B ) e. RR* ) |
| 18 | xrletri | |- ( ( ( P pCnt A ) e. RR* /\ ( P pCnt B ) e. RR* ) -> ( ( P pCnt A ) <_ ( P pCnt B ) \/ ( P pCnt B ) <_ ( P pCnt A ) ) ) |
|
| 19 | 14 17 18 | 3imp3i2an | |- ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) -> ( ( P pCnt A ) <_ ( P pCnt B ) \/ ( P pCnt B ) <_ ( P pCnt A ) ) ) |
| 20 | 19 | orcanai | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ -. ( P pCnt A ) <_ ( P pCnt B ) ) -> ( P pCnt B ) <_ ( P pCnt A ) ) |
| 21 | 3ancomb | |- ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) <-> ( P e. Prime /\ B e. ZZ /\ A e. ZZ ) ) |
|
| 22 | pcgcd1 | |- ( ( ( P e. Prime /\ B e. ZZ /\ A e. ZZ ) /\ ( P pCnt B ) <_ ( P pCnt A ) ) -> ( P pCnt ( B gcd A ) ) = ( P pCnt B ) ) |
|
| 23 | 21 22 | sylanb | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ ( P pCnt B ) <_ ( P pCnt A ) ) -> ( P pCnt ( B gcd A ) ) = ( P pCnt B ) ) |
| 24 | 20 23 | syldan | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ -. ( P pCnt A ) <_ ( P pCnt B ) ) -> ( P pCnt ( B gcd A ) ) = ( P pCnt B ) ) |
| 25 | 10 24 | eqtr4d | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ -. ( P pCnt A ) <_ ( P pCnt B ) ) -> if ( ( P pCnt A ) <_ ( P pCnt B ) , ( P pCnt A ) , ( P pCnt B ) ) = ( P pCnt ( B gcd A ) ) ) |
| 26 | 8 25 | eqtr4d | |- ( ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) /\ -. ( P pCnt A ) <_ ( P pCnt B ) ) -> ( P pCnt ( A gcd B ) ) = if ( ( P pCnt A ) <_ ( P pCnt B ) , ( P pCnt A ) , ( P pCnt B ) ) ) |
| 27 | 4 26 | pm2.61dan | |- ( ( P e. Prime /\ A e. ZZ /\ B e. ZZ ) -> ( P pCnt ( A gcd B ) ) = if ( ( P pCnt A ) <_ ( P pCnt B ) , ( P pCnt A ) , ( P pCnt B ) ) ) |