This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Trichotomy law for extended reals. (Contributed by FL, 2-Aug-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrletri3 | |- ( ( A e. RR* /\ B e. RR* ) -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlttri3 | |- ( ( A e. RR* /\ B e. RR* ) -> ( A = B <-> ( -. A < B /\ -. B < A ) ) ) |
|
| 2 | 1 | biancomd | |- ( ( A e. RR* /\ B e. RR* ) -> ( A = B <-> ( -. B < A /\ -. A < B ) ) ) |
| 3 | xrlenlt | |- ( ( A e. RR* /\ B e. RR* ) -> ( A <_ B <-> -. B < A ) ) |
|
| 4 | xrlenlt | |- ( ( B e. RR* /\ A e. RR* ) -> ( B <_ A <-> -. A < B ) ) |
|
| 5 | 4 | ancoms | |- ( ( A e. RR* /\ B e. RR* ) -> ( B <_ A <-> -. A < B ) ) |
| 6 | 3 5 | anbi12d | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A <_ B /\ B <_ A ) <-> ( -. B < A /\ -. A < B ) ) ) |
| 7 | 2 6 | bitr4d | |- ( ( A e. RR* /\ B e. RR* ) -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |