This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Only 0 is divisible by 0. Theorem 1.1(h) in ApostolNT p. 14. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0dvds | |- ( N e. ZZ -> ( 0 || N <-> N = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z | |- 0 e. ZZ |
|
| 2 | divides | |- ( ( 0 e. ZZ /\ N e. ZZ ) -> ( 0 || N <-> E. n e. ZZ ( n x. 0 ) = N ) ) |
|
| 3 | 1 2 | mpan | |- ( N e. ZZ -> ( 0 || N <-> E. n e. ZZ ( n x. 0 ) = N ) ) |
| 4 | zcn | |- ( n e. ZZ -> n e. CC ) |
|
| 5 | 4 | mul01d | |- ( n e. ZZ -> ( n x. 0 ) = 0 ) |
| 6 | eqtr2 | |- ( ( ( n x. 0 ) = N /\ ( n x. 0 ) = 0 ) -> N = 0 ) |
|
| 7 | 5 6 | sylan2 | |- ( ( ( n x. 0 ) = N /\ n e. ZZ ) -> N = 0 ) |
| 8 | 7 | ancoms | |- ( ( n e. ZZ /\ ( n x. 0 ) = N ) -> N = 0 ) |
| 9 | 8 | rexlimiva | |- ( E. n e. ZZ ( n x. 0 ) = N -> N = 0 ) |
| 10 | 3 9 | biimtrdi | |- ( N e. ZZ -> ( 0 || N -> N = 0 ) ) |
| 11 | dvds0 | |- ( 0 e. ZZ -> 0 || 0 ) |
|
| 12 | 1 11 | ax-mp | |- 0 || 0 |
| 13 | breq2 | |- ( N = 0 -> ( 0 || N <-> 0 || 0 ) ) |
|
| 14 | 12 13 | mpbiri | |- ( N = 0 -> 0 || N ) |
| 15 | 10 14 | impbid1 | |- ( N e. ZZ -> ( 0 || N <-> N = 0 ) ) |