This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The positive difference of unequal integers is a positive integer. (Generalization of nnsub .) (Contributed by NM, 11-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | znnsub | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> ( N - M ) e. NN ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 2 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 3 | posdif | |- ( ( M e. RR /\ N e. RR ) -> ( M < N <-> 0 < ( N - M ) ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> 0 < ( N - M ) ) ) |
| 5 | zsubcl | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( N - M ) e. ZZ ) |
|
| 6 | 5 | ancoms | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( N - M ) e. ZZ ) |
| 7 | 6 | biantrurd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( 0 < ( N - M ) <-> ( ( N - M ) e. ZZ /\ 0 < ( N - M ) ) ) ) |
| 8 | 4 7 | bitrd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> ( ( N - M ) e. ZZ /\ 0 < ( N - M ) ) ) ) |
| 9 | elnnz | |- ( ( N - M ) e. NN <-> ( ( N - M ) e. ZZ /\ 0 < ( N - M ) ) ) |
|
| 10 | 8 9 | bitr4di | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> ( N - M ) e. NN ) ) |