This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The prime count of an absolute value. (Contributed by Mario Carneiro, 13-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcabs | |- ( ( P e. Prime /\ A e. QQ ) -> ( P pCnt ( abs ` A ) ) = ( P pCnt A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( ( abs ` A ) = A -> ( P pCnt ( abs ` A ) ) = ( P pCnt A ) ) |
|
| 2 | 1 | a1i | |- ( ( P e. Prime /\ A e. QQ ) -> ( ( abs ` A ) = A -> ( P pCnt ( abs ` A ) ) = ( P pCnt A ) ) ) |
| 3 | pcneg | |- ( ( P e. Prime /\ A e. QQ ) -> ( P pCnt -u A ) = ( P pCnt A ) ) |
|
| 4 | oveq2 | |- ( ( abs ` A ) = -u A -> ( P pCnt ( abs ` A ) ) = ( P pCnt -u A ) ) |
|
| 5 | 4 | eqeq1d | |- ( ( abs ` A ) = -u A -> ( ( P pCnt ( abs ` A ) ) = ( P pCnt A ) <-> ( P pCnt -u A ) = ( P pCnt A ) ) ) |
| 6 | 3 5 | syl5ibrcom | |- ( ( P e. Prime /\ A e. QQ ) -> ( ( abs ` A ) = -u A -> ( P pCnt ( abs ` A ) ) = ( P pCnt A ) ) ) |
| 7 | qre | |- ( A e. QQ -> A e. RR ) |
|
| 8 | 7 | adantl | |- ( ( P e. Prime /\ A e. QQ ) -> A e. RR ) |
| 9 | 8 | absord | |- ( ( P e. Prime /\ A e. QQ ) -> ( ( abs ` A ) = A \/ ( abs ` A ) = -u A ) ) |
| 10 | 2 6 9 | mpjaod | |- ( ( P e. Prime /\ A e. QQ ) -> ( P pCnt ( abs ` A ) ) = ( P pCnt A ) ) |