This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ovollb2 . (Contributed by Mario Carneiro, 24-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovollb2.1 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
|
| ovollb2.2 | |- G = ( n e. NN |-> <. ( ( 1st ` ( F ` n ) ) - ( ( B / 2 ) / ( 2 ^ n ) ) ) , ( ( 2nd ` ( F ` n ) ) + ( ( B / 2 ) / ( 2 ^ n ) ) ) >. ) |
||
| ovollb2.3 | |- T = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
||
| ovollb2.4 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
||
| ovollb2.5 | |- ( ph -> A C_ U. ran ( [,] o. F ) ) |
||
| ovollb2.6 | |- ( ph -> B e. RR+ ) |
||
| ovollb2.7 | |- ( ph -> sup ( ran S , RR* , < ) e. RR ) |
||
| Assertion | ovollb2lem | |- ( ph -> ( vol* ` A ) <_ ( sup ( ran S , RR* , < ) + B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovollb2.1 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
|
| 2 | ovollb2.2 | |- G = ( n e. NN |-> <. ( ( 1st ` ( F ` n ) ) - ( ( B / 2 ) / ( 2 ^ n ) ) ) , ( ( 2nd ` ( F ` n ) ) + ( ( B / 2 ) / ( 2 ^ n ) ) ) >. ) |
|
| 3 | ovollb2.3 | |- T = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
|
| 4 | ovollb2.4 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 5 | ovollb2.5 | |- ( ph -> A C_ U. ran ( [,] o. F ) ) |
|
| 6 | ovollb2.6 | |- ( ph -> B e. RR+ ) |
|
| 7 | ovollb2.7 | |- ( ph -> sup ( ran S , RR* , < ) e. RR ) |
|
| 8 | ovolficcss | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> U. ran ( [,] o. F ) C_ RR ) |
|
| 9 | 4 8 | syl | |- ( ph -> U. ran ( [,] o. F ) C_ RR ) |
| 10 | 5 9 | sstrd | |- ( ph -> A C_ RR ) |
| 11 | ovolcl | |- ( A C_ RR -> ( vol* ` A ) e. RR* ) |
|
| 12 | 10 11 | syl | |- ( ph -> ( vol* ` A ) e. RR* ) |
| 13 | ovolfcl | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) ) |
|
| 14 | 4 13 | sylan | |- ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) e. RR /\ ( 2nd ` ( F ` n ) ) e. RR /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) ) |
| 15 | 14 | simp1d | |- ( ( ph /\ n e. NN ) -> ( 1st ` ( F ` n ) ) e. RR ) |
| 16 | 6 | rphalfcld | |- ( ph -> ( B / 2 ) e. RR+ ) |
| 17 | 16 | adantr | |- ( ( ph /\ n e. NN ) -> ( B / 2 ) e. RR+ ) |
| 18 | 2nn | |- 2 e. NN |
|
| 19 | nnnn0 | |- ( n e. NN -> n e. NN0 ) |
|
| 20 | 19 | adantl | |- ( ( ph /\ n e. NN ) -> n e. NN0 ) |
| 21 | nnexpcl | |- ( ( 2 e. NN /\ n e. NN0 ) -> ( 2 ^ n ) e. NN ) |
|
| 22 | 18 20 21 | sylancr | |- ( ( ph /\ n e. NN ) -> ( 2 ^ n ) e. NN ) |
| 23 | 22 | nnrpd | |- ( ( ph /\ n e. NN ) -> ( 2 ^ n ) e. RR+ ) |
| 24 | 17 23 | rpdivcld | |- ( ( ph /\ n e. NN ) -> ( ( B / 2 ) / ( 2 ^ n ) ) e. RR+ ) |
| 25 | 24 | rpred | |- ( ( ph /\ n e. NN ) -> ( ( B / 2 ) / ( 2 ^ n ) ) e. RR ) |
| 26 | 15 25 | resubcld | |- ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) - ( ( B / 2 ) / ( 2 ^ n ) ) ) e. RR ) |
| 27 | 14 | simp2d | |- ( ( ph /\ n e. NN ) -> ( 2nd ` ( F ` n ) ) e. RR ) |
| 28 | 27 25 | readdcld | |- ( ( ph /\ n e. NN ) -> ( ( 2nd ` ( F ` n ) ) + ( ( B / 2 ) / ( 2 ^ n ) ) ) e. RR ) |
| 29 | 15 24 | ltsubrpd | |- ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) - ( ( B / 2 ) / ( 2 ^ n ) ) ) < ( 1st ` ( F ` n ) ) ) |
| 30 | 14 | simp3d | |- ( ( ph /\ n e. NN ) -> ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) |
| 31 | 27 24 | ltaddrpd | |- ( ( ph /\ n e. NN ) -> ( 2nd ` ( F ` n ) ) < ( ( 2nd ` ( F ` n ) ) + ( ( B / 2 ) / ( 2 ^ n ) ) ) ) |
| 32 | 15 27 28 30 31 | lelttrd | |- ( ( ph /\ n e. NN ) -> ( 1st ` ( F ` n ) ) < ( ( 2nd ` ( F ` n ) ) + ( ( B / 2 ) / ( 2 ^ n ) ) ) ) |
| 33 | 26 15 28 29 32 | lttrd | |- ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) - ( ( B / 2 ) / ( 2 ^ n ) ) ) < ( ( 2nd ` ( F ` n ) ) + ( ( B / 2 ) / ( 2 ^ n ) ) ) ) |
| 34 | 26 28 33 | ltled | |- ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) - ( ( B / 2 ) / ( 2 ^ n ) ) ) <_ ( ( 2nd ` ( F ` n ) ) + ( ( B / 2 ) / ( 2 ^ n ) ) ) ) |
| 35 | df-br | |- ( ( ( 1st ` ( F ` n ) ) - ( ( B / 2 ) / ( 2 ^ n ) ) ) <_ ( ( 2nd ` ( F ` n ) ) + ( ( B / 2 ) / ( 2 ^ n ) ) ) <-> <. ( ( 1st ` ( F ` n ) ) - ( ( B / 2 ) / ( 2 ^ n ) ) ) , ( ( 2nd ` ( F ` n ) ) + ( ( B / 2 ) / ( 2 ^ n ) ) ) >. e. <_ ) |
|
| 36 | 34 35 | sylib | |- ( ( ph /\ n e. NN ) -> <. ( ( 1st ` ( F ` n ) ) - ( ( B / 2 ) / ( 2 ^ n ) ) ) , ( ( 2nd ` ( F ` n ) ) + ( ( B / 2 ) / ( 2 ^ n ) ) ) >. e. <_ ) |
| 37 | 26 28 | opelxpd | |- ( ( ph /\ n e. NN ) -> <. ( ( 1st ` ( F ` n ) ) - ( ( B / 2 ) / ( 2 ^ n ) ) ) , ( ( 2nd ` ( F ` n ) ) + ( ( B / 2 ) / ( 2 ^ n ) ) ) >. e. ( RR X. RR ) ) |
| 38 | 36 37 | elind | |- ( ( ph /\ n e. NN ) -> <. ( ( 1st ` ( F ` n ) ) - ( ( B / 2 ) / ( 2 ^ n ) ) ) , ( ( 2nd ` ( F ` n ) ) + ( ( B / 2 ) / ( 2 ^ n ) ) ) >. e. ( <_ i^i ( RR X. RR ) ) ) |
| 39 | 38 2 | fmptd | |- ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 40 | eqid | |- ( ( abs o. - ) o. G ) = ( ( abs o. - ) o. G ) |
|
| 41 | 40 3 | ovolsf | |- ( G : NN --> ( <_ i^i ( RR X. RR ) ) -> T : NN --> ( 0 [,) +oo ) ) |
| 42 | 39 41 | syl | |- ( ph -> T : NN --> ( 0 [,) +oo ) ) |
| 43 | 42 | frnd | |- ( ph -> ran T C_ ( 0 [,) +oo ) ) |
| 44 | icossxr | |- ( 0 [,) +oo ) C_ RR* |
|
| 45 | 43 44 | sstrdi | |- ( ph -> ran T C_ RR* ) |
| 46 | supxrcl | |- ( ran T C_ RR* -> sup ( ran T , RR* , < ) e. RR* ) |
|
| 47 | 45 46 | syl | |- ( ph -> sup ( ran T , RR* , < ) e. RR* ) |
| 48 | 6 | rpred | |- ( ph -> B e. RR ) |
| 49 | 7 48 | readdcld | |- ( ph -> ( sup ( ran S , RR* , < ) + B ) e. RR ) |
| 50 | 49 | rexrd | |- ( ph -> ( sup ( ran S , RR* , < ) + B ) e. RR* ) |
| 51 | 2fveq3 | |- ( n = m -> ( 1st ` ( F ` n ) ) = ( 1st ` ( F ` m ) ) ) |
|
| 52 | oveq2 | |- ( n = m -> ( 2 ^ n ) = ( 2 ^ m ) ) |
|
| 53 | 52 | oveq2d | |- ( n = m -> ( ( B / 2 ) / ( 2 ^ n ) ) = ( ( B / 2 ) / ( 2 ^ m ) ) ) |
| 54 | 51 53 | oveq12d | |- ( n = m -> ( ( 1st ` ( F ` n ) ) - ( ( B / 2 ) / ( 2 ^ n ) ) ) = ( ( 1st ` ( F ` m ) ) - ( ( B / 2 ) / ( 2 ^ m ) ) ) ) |
| 55 | 2fveq3 | |- ( n = m -> ( 2nd ` ( F ` n ) ) = ( 2nd ` ( F ` m ) ) ) |
|
| 56 | 55 53 | oveq12d | |- ( n = m -> ( ( 2nd ` ( F ` n ) ) + ( ( B / 2 ) / ( 2 ^ n ) ) ) = ( ( 2nd ` ( F ` m ) ) + ( ( B / 2 ) / ( 2 ^ m ) ) ) ) |
| 57 | 54 56 | opeq12d | |- ( n = m -> <. ( ( 1st ` ( F ` n ) ) - ( ( B / 2 ) / ( 2 ^ n ) ) ) , ( ( 2nd ` ( F ` n ) ) + ( ( B / 2 ) / ( 2 ^ n ) ) ) >. = <. ( ( 1st ` ( F ` m ) ) - ( ( B / 2 ) / ( 2 ^ m ) ) ) , ( ( 2nd ` ( F ` m ) ) + ( ( B / 2 ) / ( 2 ^ m ) ) ) >. ) |
| 58 | opex | |- <. ( ( 1st ` ( F ` m ) ) - ( ( B / 2 ) / ( 2 ^ m ) ) ) , ( ( 2nd ` ( F ` m ) ) + ( ( B / 2 ) / ( 2 ^ m ) ) ) >. e. _V |
|
| 59 | 57 2 58 | fvmpt | |- ( m e. NN -> ( G ` m ) = <. ( ( 1st ` ( F ` m ) ) - ( ( B / 2 ) / ( 2 ^ m ) ) ) , ( ( 2nd ` ( F ` m ) ) + ( ( B / 2 ) / ( 2 ^ m ) ) ) >. ) |
| 60 | 59 | adantl | |- ( ( ph /\ m e. NN ) -> ( G ` m ) = <. ( ( 1st ` ( F ` m ) ) - ( ( B / 2 ) / ( 2 ^ m ) ) ) , ( ( 2nd ` ( F ` m ) ) + ( ( B / 2 ) / ( 2 ^ m ) ) ) >. ) |
| 61 | 60 | fveq2d | |- ( ( ph /\ m e. NN ) -> ( 1st ` ( G ` m ) ) = ( 1st ` <. ( ( 1st ` ( F ` m ) ) - ( ( B / 2 ) / ( 2 ^ m ) ) ) , ( ( 2nd ` ( F ` m ) ) + ( ( B / 2 ) / ( 2 ^ m ) ) ) >. ) ) |
| 62 | ovex | |- ( ( 1st ` ( F ` m ) ) - ( ( B / 2 ) / ( 2 ^ m ) ) ) e. _V |
|
| 63 | ovex | |- ( ( 2nd ` ( F ` m ) ) + ( ( B / 2 ) / ( 2 ^ m ) ) ) e. _V |
|
| 64 | 62 63 | op1st | |- ( 1st ` <. ( ( 1st ` ( F ` m ) ) - ( ( B / 2 ) / ( 2 ^ m ) ) ) , ( ( 2nd ` ( F ` m ) ) + ( ( B / 2 ) / ( 2 ^ m ) ) ) >. ) = ( ( 1st ` ( F ` m ) ) - ( ( B / 2 ) / ( 2 ^ m ) ) ) |
| 65 | 61 64 | eqtrdi | |- ( ( ph /\ m e. NN ) -> ( 1st ` ( G ` m ) ) = ( ( 1st ` ( F ` m ) ) - ( ( B / 2 ) / ( 2 ^ m ) ) ) ) |
| 66 | ovolfcl | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ m e. NN ) -> ( ( 1st ` ( F ` m ) ) e. RR /\ ( 2nd ` ( F ` m ) ) e. RR /\ ( 1st ` ( F ` m ) ) <_ ( 2nd ` ( F ` m ) ) ) ) |
|
| 67 | 4 66 | sylan | |- ( ( ph /\ m e. NN ) -> ( ( 1st ` ( F ` m ) ) e. RR /\ ( 2nd ` ( F ` m ) ) e. RR /\ ( 1st ` ( F ` m ) ) <_ ( 2nd ` ( F ` m ) ) ) ) |
| 68 | 67 | simp1d | |- ( ( ph /\ m e. NN ) -> ( 1st ` ( F ` m ) ) e. RR ) |
| 69 | 16 | adantr | |- ( ( ph /\ m e. NN ) -> ( B / 2 ) e. RR+ ) |
| 70 | nnnn0 | |- ( m e. NN -> m e. NN0 ) |
|
| 71 | 70 | adantl | |- ( ( ph /\ m e. NN ) -> m e. NN0 ) |
| 72 | nnexpcl | |- ( ( 2 e. NN /\ m e. NN0 ) -> ( 2 ^ m ) e. NN ) |
|
| 73 | 18 71 72 | sylancr | |- ( ( ph /\ m e. NN ) -> ( 2 ^ m ) e. NN ) |
| 74 | 73 | nnrpd | |- ( ( ph /\ m e. NN ) -> ( 2 ^ m ) e. RR+ ) |
| 75 | 69 74 | rpdivcld | |- ( ( ph /\ m e. NN ) -> ( ( B / 2 ) / ( 2 ^ m ) ) e. RR+ ) |
| 76 | 68 75 | ltsubrpd | |- ( ( ph /\ m e. NN ) -> ( ( 1st ` ( F ` m ) ) - ( ( B / 2 ) / ( 2 ^ m ) ) ) < ( 1st ` ( F ` m ) ) ) |
| 77 | 65 76 | eqbrtrd | |- ( ( ph /\ m e. NN ) -> ( 1st ` ( G ` m ) ) < ( 1st ` ( F ` m ) ) ) |
| 78 | 77 | adantlr | |- ( ( ( ph /\ z e. A ) /\ m e. NN ) -> ( 1st ` ( G ` m ) ) < ( 1st ` ( F ` m ) ) ) |
| 79 | ovolfcl | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ m e. NN ) -> ( ( 1st ` ( G ` m ) ) e. RR /\ ( 2nd ` ( G ` m ) ) e. RR /\ ( 1st ` ( G ` m ) ) <_ ( 2nd ` ( G ` m ) ) ) ) |
|
| 80 | 39 79 | sylan | |- ( ( ph /\ m e. NN ) -> ( ( 1st ` ( G ` m ) ) e. RR /\ ( 2nd ` ( G ` m ) ) e. RR /\ ( 1st ` ( G ` m ) ) <_ ( 2nd ` ( G ` m ) ) ) ) |
| 81 | 80 | simp1d | |- ( ( ph /\ m e. NN ) -> ( 1st ` ( G ` m ) ) e. RR ) |
| 82 | 81 | adantlr | |- ( ( ( ph /\ z e. A ) /\ m e. NN ) -> ( 1st ` ( G ` m ) ) e. RR ) |
| 83 | 68 | adantlr | |- ( ( ( ph /\ z e. A ) /\ m e. NN ) -> ( 1st ` ( F ` m ) ) e. RR ) |
| 84 | 10 | sselda | |- ( ( ph /\ z e. A ) -> z e. RR ) |
| 85 | 84 | adantr | |- ( ( ( ph /\ z e. A ) /\ m e. NN ) -> z e. RR ) |
| 86 | ltletr | |- ( ( ( 1st ` ( G ` m ) ) e. RR /\ ( 1st ` ( F ` m ) ) e. RR /\ z e. RR ) -> ( ( ( 1st ` ( G ` m ) ) < ( 1st ` ( F ` m ) ) /\ ( 1st ` ( F ` m ) ) <_ z ) -> ( 1st ` ( G ` m ) ) < z ) ) |
|
| 87 | 82 83 85 86 | syl3anc | |- ( ( ( ph /\ z e. A ) /\ m e. NN ) -> ( ( ( 1st ` ( G ` m ) ) < ( 1st ` ( F ` m ) ) /\ ( 1st ` ( F ` m ) ) <_ z ) -> ( 1st ` ( G ` m ) ) < z ) ) |
| 88 | 78 87 | mpand | |- ( ( ( ph /\ z e. A ) /\ m e. NN ) -> ( ( 1st ` ( F ` m ) ) <_ z -> ( 1st ` ( G ` m ) ) < z ) ) |
| 89 | 67 | simp2d | |- ( ( ph /\ m e. NN ) -> ( 2nd ` ( F ` m ) ) e. RR ) |
| 90 | 89 75 | ltaddrpd | |- ( ( ph /\ m e. NN ) -> ( 2nd ` ( F ` m ) ) < ( ( 2nd ` ( F ` m ) ) + ( ( B / 2 ) / ( 2 ^ m ) ) ) ) |
| 91 | 60 | fveq2d | |- ( ( ph /\ m e. NN ) -> ( 2nd ` ( G ` m ) ) = ( 2nd ` <. ( ( 1st ` ( F ` m ) ) - ( ( B / 2 ) / ( 2 ^ m ) ) ) , ( ( 2nd ` ( F ` m ) ) + ( ( B / 2 ) / ( 2 ^ m ) ) ) >. ) ) |
| 92 | 62 63 | op2nd | |- ( 2nd ` <. ( ( 1st ` ( F ` m ) ) - ( ( B / 2 ) / ( 2 ^ m ) ) ) , ( ( 2nd ` ( F ` m ) ) + ( ( B / 2 ) / ( 2 ^ m ) ) ) >. ) = ( ( 2nd ` ( F ` m ) ) + ( ( B / 2 ) / ( 2 ^ m ) ) ) |
| 93 | 91 92 | eqtrdi | |- ( ( ph /\ m e. NN ) -> ( 2nd ` ( G ` m ) ) = ( ( 2nd ` ( F ` m ) ) + ( ( B / 2 ) / ( 2 ^ m ) ) ) ) |
| 94 | 90 93 | breqtrrd | |- ( ( ph /\ m e. NN ) -> ( 2nd ` ( F ` m ) ) < ( 2nd ` ( G ` m ) ) ) |
| 95 | 94 | adantlr | |- ( ( ( ph /\ z e. A ) /\ m e. NN ) -> ( 2nd ` ( F ` m ) ) < ( 2nd ` ( G ` m ) ) ) |
| 96 | 89 | adantlr | |- ( ( ( ph /\ z e. A ) /\ m e. NN ) -> ( 2nd ` ( F ` m ) ) e. RR ) |
| 97 | 80 | simp2d | |- ( ( ph /\ m e. NN ) -> ( 2nd ` ( G ` m ) ) e. RR ) |
| 98 | 97 | adantlr | |- ( ( ( ph /\ z e. A ) /\ m e. NN ) -> ( 2nd ` ( G ` m ) ) e. RR ) |
| 99 | lelttr | |- ( ( z e. RR /\ ( 2nd ` ( F ` m ) ) e. RR /\ ( 2nd ` ( G ` m ) ) e. RR ) -> ( ( z <_ ( 2nd ` ( F ` m ) ) /\ ( 2nd ` ( F ` m ) ) < ( 2nd ` ( G ` m ) ) ) -> z < ( 2nd ` ( G ` m ) ) ) ) |
|
| 100 | 85 96 98 99 | syl3anc | |- ( ( ( ph /\ z e. A ) /\ m e. NN ) -> ( ( z <_ ( 2nd ` ( F ` m ) ) /\ ( 2nd ` ( F ` m ) ) < ( 2nd ` ( G ` m ) ) ) -> z < ( 2nd ` ( G ` m ) ) ) ) |
| 101 | 95 100 | mpan2d | |- ( ( ( ph /\ z e. A ) /\ m e. NN ) -> ( z <_ ( 2nd ` ( F ` m ) ) -> z < ( 2nd ` ( G ` m ) ) ) ) |
| 102 | 88 101 | anim12d | |- ( ( ( ph /\ z e. A ) /\ m e. NN ) -> ( ( ( 1st ` ( F ` m ) ) <_ z /\ z <_ ( 2nd ` ( F ` m ) ) ) -> ( ( 1st ` ( G ` m ) ) < z /\ z < ( 2nd ` ( G ` m ) ) ) ) ) |
| 103 | 102 | reximdva | |- ( ( ph /\ z e. A ) -> ( E. m e. NN ( ( 1st ` ( F ` m ) ) <_ z /\ z <_ ( 2nd ` ( F ` m ) ) ) -> E. m e. NN ( ( 1st ` ( G ` m ) ) < z /\ z < ( 2nd ` ( G ` m ) ) ) ) ) |
| 104 | 103 | ralimdva | |- ( ph -> ( A. z e. A E. m e. NN ( ( 1st ` ( F ` m ) ) <_ z /\ z <_ ( 2nd ` ( F ` m ) ) ) -> A. z e. A E. m e. NN ( ( 1st ` ( G ` m ) ) < z /\ z < ( 2nd ` ( G ` m ) ) ) ) ) |
| 105 | ovolficc | |- ( ( A C_ RR /\ F : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A C_ U. ran ( [,] o. F ) <-> A. z e. A E. m e. NN ( ( 1st ` ( F ` m ) ) <_ z /\ z <_ ( 2nd ` ( F ` m ) ) ) ) ) |
|
| 106 | 10 4 105 | syl2anc | |- ( ph -> ( A C_ U. ran ( [,] o. F ) <-> A. z e. A E. m e. NN ( ( 1st ` ( F ` m ) ) <_ z /\ z <_ ( 2nd ` ( F ` m ) ) ) ) ) |
| 107 | ovolfioo | |- ( ( A C_ RR /\ G : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A C_ U. ran ( (,) o. G ) <-> A. z e. A E. m e. NN ( ( 1st ` ( G ` m ) ) < z /\ z < ( 2nd ` ( G ` m ) ) ) ) ) |
|
| 108 | 10 39 107 | syl2anc | |- ( ph -> ( A C_ U. ran ( (,) o. G ) <-> A. z e. A E. m e. NN ( ( 1st ` ( G ` m ) ) < z /\ z < ( 2nd ` ( G ` m ) ) ) ) ) |
| 109 | 104 106 108 | 3imtr4d | |- ( ph -> ( A C_ U. ran ( [,] o. F ) -> A C_ U. ran ( (,) o. G ) ) ) |
| 110 | 5 109 | mpd | |- ( ph -> A C_ U. ran ( (,) o. G ) ) |
| 111 | 3 | ovollb | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. G ) ) -> ( vol* ` A ) <_ sup ( ran T , RR* , < ) ) |
| 112 | 39 110 111 | syl2anc | |- ( ph -> ( vol* ` A ) <_ sup ( ran T , RR* , < ) ) |
| 113 | 3 | fveq1i | |- ( T ` k ) = ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` k ) |
| 114 | fzfid | |- ( ( ph /\ k e. NN ) -> ( 1 ... k ) e. Fin ) |
|
| 115 | rge0ssre | |- ( 0 [,) +oo ) C_ RR |
|
| 116 | eqid | |- ( ( abs o. - ) o. F ) = ( ( abs o. - ) o. F ) |
|
| 117 | 116 | ovolfsf | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ( ( abs o. - ) o. F ) : NN --> ( 0 [,) +oo ) ) |
| 118 | 4 117 | syl | |- ( ph -> ( ( abs o. - ) o. F ) : NN --> ( 0 [,) +oo ) ) |
| 119 | 118 | adantr | |- ( ( ph /\ k e. NN ) -> ( ( abs o. - ) o. F ) : NN --> ( 0 [,) +oo ) ) |
| 120 | elfznn | |- ( m e. ( 1 ... k ) -> m e. NN ) |
|
| 121 | ffvelcdm | |- ( ( ( ( abs o. - ) o. F ) : NN --> ( 0 [,) +oo ) /\ m e. NN ) -> ( ( ( abs o. - ) o. F ) ` m ) e. ( 0 [,) +oo ) ) |
|
| 122 | 119 120 121 | syl2an | |- ( ( ( ph /\ k e. NN ) /\ m e. ( 1 ... k ) ) -> ( ( ( abs o. - ) o. F ) ` m ) e. ( 0 [,) +oo ) ) |
| 123 | 115 122 | sselid | |- ( ( ( ph /\ k e. NN ) /\ m e. ( 1 ... k ) ) -> ( ( ( abs o. - ) o. F ) ` m ) e. RR ) |
| 124 | 123 | recnd | |- ( ( ( ph /\ k e. NN ) /\ m e. ( 1 ... k ) ) -> ( ( ( abs o. - ) o. F ) ` m ) e. CC ) |
| 125 | 6 | adantr | |- ( ( ph /\ m e. NN ) -> B e. RR+ ) |
| 126 | 125 74 | rpdivcld | |- ( ( ph /\ m e. NN ) -> ( B / ( 2 ^ m ) ) e. RR+ ) |
| 127 | 126 | rpcnd | |- ( ( ph /\ m e. NN ) -> ( B / ( 2 ^ m ) ) e. CC ) |
| 128 | 120 127 | sylan2 | |- ( ( ph /\ m e. ( 1 ... k ) ) -> ( B / ( 2 ^ m ) ) e. CC ) |
| 129 | 128 | adantlr | |- ( ( ( ph /\ k e. NN ) /\ m e. ( 1 ... k ) ) -> ( B / ( 2 ^ m ) ) e. CC ) |
| 130 | 114 124 129 | fsumadd | |- ( ( ph /\ k e. NN ) -> sum_ m e. ( 1 ... k ) ( ( ( ( abs o. - ) o. F ) ` m ) + ( B / ( 2 ^ m ) ) ) = ( sum_ m e. ( 1 ... k ) ( ( ( abs o. - ) o. F ) ` m ) + sum_ m e. ( 1 ... k ) ( B / ( 2 ^ m ) ) ) ) |
| 131 | 40 | ovolfsval | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ m e. NN ) -> ( ( ( abs o. - ) o. G ) ` m ) = ( ( 2nd ` ( G ` m ) ) - ( 1st ` ( G ` m ) ) ) ) |
| 132 | 39 131 | sylan | |- ( ( ph /\ m e. NN ) -> ( ( ( abs o. - ) o. G ) ` m ) = ( ( 2nd ` ( G ` m ) ) - ( 1st ` ( G ` m ) ) ) ) |
| 133 | 89 | recnd | |- ( ( ph /\ m e. NN ) -> ( 2nd ` ( F ` m ) ) e. CC ) |
| 134 | 75 | rpcnd | |- ( ( ph /\ m e. NN ) -> ( ( B / 2 ) / ( 2 ^ m ) ) e. CC ) |
| 135 | 68 | recnd | |- ( ( ph /\ m e. NN ) -> ( 1st ` ( F ` m ) ) e. CC ) |
| 136 | 135 134 | subcld | |- ( ( ph /\ m e. NN ) -> ( ( 1st ` ( F ` m ) ) - ( ( B / 2 ) / ( 2 ^ m ) ) ) e. CC ) |
| 137 | 133 134 136 | addsubassd | |- ( ( ph /\ m e. NN ) -> ( ( ( 2nd ` ( F ` m ) ) + ( ( B / 2 ) / ( 2 ^ m ) ) ) - ( ( 1st ` ( F ` m ) ) - ( ( B / 2 ) / ( 2 ^ m ) ) ) ) = ( ( 2nd ` ( F ` m ) ) + ( ( ( B / 2 ) / ( 2 ^ m ) ) - ( ( 1st ` ( F ` m ) ) - ( ( B / 2 ) / ( 2 ^ m ) ) ) ) ) ) |
| 138 | 93 65 | oveq12d | |- ( ( ph /\ m e. NN ) -> ( ( 2nd ` ( G ` m ) ) - ( 1st ` ( G ` m ) ) ) = ( ( ( 2nd ` ( F ` m ) ) + ( ( B / 2 ) / ( 2 ^ m ) ) ) - ( ( 1st ` ( F ` m ) ) - ( ( B / 2 ) / ( 2 ^ m ) ) ) ) ) |
| 139 | 133 135 127 | subadd23d | |- ( ( ph /\ m e. NN ) -> ( ( ( 2nd ` ( F ` m ) ) - ( 1st ` ( F ` m ) ) ) + ( B / ( 2 ^ m ) ) ) = ( ( 2nd ` ( F ` m ) ) + ( ( B / ( 2 ^ m ) ) - ( 1st ` ( F ` m ) ) ) ) ) |
| 140 | 116 | ovolfsval | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ m e. NN ) -> ( ( ( abs o. - ) o. F ) ` m ) = ( ( 2nd ` ( F ` m ) ) - ( 1st ` ( F ` m ) ) ) ) |
| 141 | 4 140 | sylan | |- ( ( ph /\ m e. NN ) -> ( ( ( abs o. - ) o. F ) ` m ) = ( ( 2nd ` ( F ` m ) ) - ( 1st ` ( F ` m ) ) ) ) |
| 142 | 141 | oveq1d | |- ( ( ph /\ m e. NN ) -> ( ( ( ( abs o. - ) o. F ) ` m ) + ( B / ( 2 ^ m ) ) ) = ( ( ( 2nd ` ( F ` m ) ) - ( 1st ` ( F ` m ) ) ) + ( B / ( 2 ^ m ) ) ) ) |
| 143 | 134 135 134 | subsub3d | |- ( ( ph /\ m e. NN ) -> ( ( ( B / 2 ) / ( 2 ^ m ) ) - ( ( 1st ` ( F ` m ) ) - ( ( B / 2 ) / ( 2 ^ m ) ) ) ) = ( ( ( ( B / 2 ) / ( 2 ^ m ) ) + ( ( B / 2 ) / ( 2 ^ m ) ) ) - ( 1st ` ( F ` m ) ) ) ) |
| 144 | 69 | rpcnd | |- ( ( ph /\ m e. NN ) -> ( B / 2 ) e. CC ) |
| 145 | 73 | nncnd | |- ( ( ph /\ m e. NN ) -> ( 2 ^ m ) e. CC ) |
| 146 | 73 | nnne0d | |- ( ( ph /\ m e. NN ) -> ( 2 ^ m ) =/= 0 ) |
| 147 | 144 144 145 146 | divdird | |- ( ( ph /\ m e. NN ) -> ( ( ( B / 2 ) + ( B / 2 ) ) / ( 2 ^ m ) ) = ( ( ( B / 2 ) / ( 2 ^ m ) ) + ( ( B / 2 ) / ( 2 ^ m ) ) ) ) |
| 148 | 125 | rpcnd | |- ( ( ph /\ m e. NN ) -> B e. CC ) |
| 149 | 148 | 2halvesd | |- ( ( ph /\ m e. NN ) -> ( ( B / 2 ) + ( B / 2 ) ) = B ) |
| 150 | 149 | oveq1d | |- ( ( ph /\ m e. NN ) -> ( ( ( B / 2 ) + ( B / 2 ) ) / ( 2 ^ m ) ) = ( B / ( 2 ^ m ) ) ) |
| 151 | 147 150 | eqtr3d | |- ( ( ph /\ m e. NN ) -> ( ( ( B / 2 ) / ( 2 ^ m ) ) + ( ( B / 2 ) / ( 2 ^ m ) ) ) = ( B / ( 2 ^ m ) ) ) |
| 152 | 151 | oveq1d | |- ( ( ph /\ m e. NN ) -> ( ( ( ( B / 2 ) / ( 2 ^ m ) ) + ( ( B / 2 ) / ( 2 ^ m ) ) ) - ( 1st ` ( F ` m ) ) ) = ( ( B / ( 2 ^ m ) ) - ( 1st ` ( F ` m ) ) ) ) |
| 153 | 143 152 | eqtrd | |- ( ( ph /\ m e. NN ) -> ( ( ( B / 2 ) / ( 2 ^ m ) ) - ( ( 1st ` ( F ` m ) ) - ( ( B / 2 ) / ( 2 ^ m ) ) ) ) = ( ( B / ( 2 ^ m ) ) - ( 1st ` ( F ` m ) ) ) ) |
| 154 | 153 | oveq2d | |- ( ( ph /\ m e. NN ) -> ( ( 2nd ` ( F ` m ) ) + ( ( ( B / 2 ) / ( 2 ^ m ) ) - ( ( 1st ` ( F ` m ) ) - ( ( B / 2 ) / ( 2 ^ m ) ) ) ) ) = ( ( 2nd ` ( F ` m ) ) + ( ( B / ( 2 ^ m ) ) - ( 1st ` ( F ` m ) ) ) ) ) |
| 155 | 139 142 154 | 3eqtr4d | |- ( ( ph /\ m e. NN ) -> ( ( ( ( abs o. - ) o. F ) ` m ) + ( B / ( 2 ^ m ) ) ) = ( ( 2nd ` ( F ` m ) ) + ( ( ( B / 2 ) / ( 2 ^ m ) ) - ( ( 1st ` ( F ` m ) ) - ( ( B / 2 ) / ( 2 ^ m ) ) ) ) ) ) |
| 156 | 137 138 155 | 3eqtr4d | |- ( ( ph /\ m e. NN ) -> ( ( 2nd ` ( G ` m ) ) - ( 1st ` ( G ` m ) ) ) = ( ( ( ( abs o. - ) o. F ) ` m ) + ( B / ( 2 ^ m ) ) ) ) |
| 157 | 132 156 | eqtrd | |- ( ( ph /\ m e. NN ) -> ( ( ( abs o. - ) o. G ) ` m ) = ( ( ( ( abs o. - ) o. F ) ` m ) + ( B / ( 2 ^ m ) ) ) ) |
| 158 | 120 157 | sylan2 | |- ( ( ph /\ m e. ( 1 ... k ) ) -> ( ( ( abs o. - ) o. G ) ` m ) = ( ( ( ( abs o. - ) o. F ) ` m ) + ( B / ( 2 ^ m ) ) ) ) |
| 159 | 158 | adantlr | |- ( ( ( ph /\ k e. NN ) /\ m e. ( 1 ... k ) ) -> ( ( ( abs o. - ) o. G ) ` m ) = ( ( ( ( abs o. - ) o. F ) ` m ) + ( B / ( 2 ^ m ) ) ) ) |
| 160 | simpr | |- ( ( ph /\ k e. NN ) -> k e. NN ) |
|
| 161 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 162 | 160 161 | eleqtrdi | |- ( ( ph /\ k e. NN ) -> k e. ( ZZ>= ` 1 ) ) |
| 163 | 124 129 | addcld | |- ( ( ( ph /\ k e. NN ) /\ m e. ( 1 ... k ) ) -> ( ( ( ( abs o. - ) o. F ) ` m ) + ( B / ( 2 ^ m ) ) ) e. CC ) |
| 164 | 159 162 163 | fsumser | |- ( ( ph /\ k e. NN ) -> sum_ m e. ( 1 ... k ) ( ( ( ( abs o. - ) o. F ) ` m ) + ( B / ( 2 ^ m ) ) ) = ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` k ) ) |
| 165 | eqidd | |- ( ( ( ph /\ k e. NN ) /\ m e. ( 1 ... k ) ) -> ( ( ( abs o. - ) o. F ) ` m ) = ( ( ( abs o. - ) o. F ) ` m ) ) |
|
| 166 | 165 162 124 | fsumser | |- ( ( ph /\ k e. NN ) -> sum_ m e. ( 1 ... k ) ( ( ( abs o. - ) o. F ) ` m ) = ( seq 1 ( + , ( ( abs o. - ) o. F ) ) ` k ) ) |
| 167 | 1 | fveq1i | |- ( S ` k ) = ( seq 1 ( + , ( ( abs o. - ) o. F ) ) ` k ) |
| 168 | 166 167 | eqtr4di | |- ( ( ph /\ k e. NN ) -> sum_ m e. ( 1 ... k ) ( ( ( abs o. - ) o. F ) ` m ) = ( S ` k ) ) |
| 169 | 6 | adantr | |- ( ( ph /\ k e. NN ) -> B e. RR+ ) |
| 170 | 169 | rpcnd | |- ( ( ph /\ k e. NN ) -> B e. CC ) |
| 171 | geo2sum | |- ( ( k e. NN /\ B e. CC ) -> sum_ m e. ( 1 ... k ) ( B / ( 2 ^ m ) ) = ( B - ( B / ( 2 ^ k ) ) ) ) |
|
| 172 | 160 170 171 | syl2anc | |- ( ( ph /\ k e. NN ) -> sum_ m e. ( 1 ... k ) ( B / ( 2 ^ m ) ) = ( B - ( B / ( 2 ^ k ) ) ) ) |
| 173 | 168 172 | oveq12d | |- ( ( ph /\ k e. NN ) -> ( sum_ m e. ( 1 ... k ) ( ( ( abs o. - ) o. F ) ` m ) + sum_ m e. ( 1 ... k ) ( B / ( 2 ^ m ) ) ) = ( ( S ` k ) + ( B - ( B / ( 2 ^ k ) ) ) ) ) |
| 174 | 130 164 173 | 3eqtr3d | |- ( ( ph /\ k e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` k ) = ( ( S ` k ) + ( B - ( B / ( 2 ^ k ) ) ) ) ) |
| 175 | 113 174 | eqtrid | |- ( ( ph /\ k e. NN ) -> ( T ` k ) = ( ( S ` k ) + ( B - ( B / ( 2 ^ k ) ) ) ) ) |
| 176 | 116 1 | ovolsf | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> S : NN --> ( 0 [,) +oo ) ) |
| 177 | 4 176 | syl | |- ( ph -> S : NN --> ( 0 [,) +oo ) ) |
| 178 | 177 | ffvelcdmda | |- ( ( ph /\ k e. NN ) -> ( S ` k ) e. ( 0 [,) +oo ) ) |
| 179 | 115 178 | sselid | |- ( ( ph /\ k e. NN ) -> ( S ` k ) e. RR ) |
| 180 | 169 | rpred | |- ( ( ph /\ k e. NN ) -> B e. RR ) |
| 181 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 182 | 181 | adantl | |- ( ( ph /\ k e. NN ) -> k e. NN0 ) |
| 183 | nnexpcl | |- ( ( 2 e. NN /\ k e. NN0 ) -> ( 2 ^ k ) e. NN ) |
|
| 184 | 18 182 183 | sylancr | |- ( ( ph /\ k e. NN ) -> ( 2 ^ k ) e. NN ) |
| 185 | 184 | nnrpd | |- ( ( ph /\ k e. NN ) -> ( 2 ^ k ) e. RR+ ) |
| 186 | 169 185 | rpdivcld | |- ( ( ph /\ k e. NN ) -> ( B / ( 2 ^ k ) ) e. RR+ ) |
| 187 | 186 | rpred | |- ( ( ph /\ k e. NN ) -> ( B / ( 2 ^ k ) ) e. RR ) |
| 188 | 180 187 | resubcld | |- ( ( ph /\ k e. NN ) -> ( B - ( B / ( 2 ^ k ) ) ) e. RR ) |
| 189 | 7 | adantr | |- ( ( ph /\ k e. NN ) -> sup ( ran S , RR* , < ) e. RR ) |
| 190 | 177 | frnd | |- ( ph -> ran S C_ ( 0 [,) +oo ) ) |
| 191 | 190 44 | sstrdi | |- ( ph -> ran S C_ RR* ) |
| 192 | 191 | adantr | |- ( ( ph /\ k e. NN ) -> ran S C_ RR* ) |
| 193 | 177 | ffnd | |- ( ph -> S Fn NN ) |
| 194 | fnfvelrn | |- ( ( S Fn NN /\ k e. NN ) -> ( S ` k ) e. ran S ) |
|
| 195 | 193 194 | sylan | |- ( ( ph /\ k e. NN ) -> ( S ` k ) e. ran S ) |
| 196 | supxrub | |- ( ( ran S C_ RR* /\ ( S ` k ) e. ran S ) -> ( S ` k ) <_ sup ( ran S , RR* , < ) ) |
|
| 197 | 192 195 196 | syl2anc | |- ( ( ph /\ k e. NN ) -> ( S ` k ) <_ sup ( ran S , RR* , < ) ) |
| 198 | 180 186 | ltsubrpd | |- ( ( ph /\ k e. NN ) -> ( B - ( B / ( 2 ^ k ) ) ) < B ) |
| 199 | 188 180 198 | ltled | |- ( ( ph /\ k e. NN ) -> ( B - ( B / ( 2 ^ k ) ) ) <_ B ) |
| 200 | 179 188 189 180 197 199 | le2addd | |- ( ( ph /\ k e. NN ) -> ( ( S ` k ) + ( B - ( B / ( 2 ^ k ) ) ) ) <_ ( sup ( ran S , RR* , < ) + B ) ) |
| 201 | 175 200 | eqbrtrd | |- ( ( ph /\ k e. NN ) -> ( T ` k ) <_ ( sup ( ran S , RR* , < ) + B ) ) |
| 202 | 201 | ralrimiva | |- ( ph -> A. k e. NN ( T ` k ) <_ ( sup ( ran S , RR* , < ) + B ) ) |
| 203 | ffn | |- ( T : NN --> ( 0 [,) +oo ) -> T Fn NN ) |
|
| 204 | breq1 | |- ( y = ( T ` k ) -> ( y <_ ( sup ( ran S , RR* , < ) + B ) <-> ( T ` k ) <_ ( sup ( ran S , RR* , < ) + B ) ) ) |
|
| 205 | 204 | ralrn | |- ( T Fn NN -> ( A. y e. ran T y <_ ( sup ( ran S , RR* , < ) + B ) <-> A. k e. NN ( T ` k ) <_ ( sup ( ran S , RR* , < ) + B ) ) ) |
| 206 | 42 203 205 | 3syl | |- ( ph -> ( A. y e. ran T y <_ ( sup ( ran S , RR* , < ) + B ) <-> A. k e. NN ( T ` k ) <_ ( sup ( ran S , RR* , < ) + B ) ) ) |
| 207 | 202 206 | mpbird | |- ( ph -> A. y e. ran T y <_ ( sup ( ran S , RR* , < ) + B ) ) |
| 208 | supxrleub | |- ( ( ran T C_ RR* /\ ( sup ( ran S , RR* , < ) + B ) e. RR* ) -> ( sup ( ran T , RR* , < ) <_ ( sup ( ran S , RR* , < ) + B ) <-> A. y e. ran T y <_ ( sup ( ran S , RR* , < ) + B ) ) ) |
|
| 209 | 45 50 208 | syl2anc | |- ( ph -> ( sup ( ran T , RR* , < ) <_ ( sup ( ran S , RR* , < ) + B ) <-> A. y e. ran T y <_ ( sup ( ran S , RR* , < ) + B ) ) ) |
| 210 | 207 209 | mpbird | |- ( ph -> sup ( ran T , RR* , < ) <_ ( sup ( ran S , RR* , < ) + B ) ) |
| 211 | 12 47 50 112 210 | xrletrd | |- ( ph -> ( vol* ` A ) <_ ( sup ( ran S , RR* , < ) + B ) ) |