This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitive law. (Contributed by NM, 25-Aug-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltletr | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A < B /\ B <_ C ) -> A < C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leloe | |- ( ( B e. RR /\ C e. RR ) -> ( B <_ C <-> ( B < C \/ B = C ) ) ) |
|
| 2 | 1 | 3adant1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B <_ C <-> ( B < C \/ B = C ) ) ) |
| 3 | lttr | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
|
| 4 | 3 | expcomd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B < C -> ( A < B -> A < C ) ) ) |
| 5 | breq2 | |- ( B = C -> ( A < B <-> A < C ) ) |
|
| 6 | 5 | biimpd | |- ( B = C -> ( A < B -> A < C ) ) |
| 7 | 6 | a1i | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B = C -> ( A < B -> A < C ) ) ) |
| 8 | 4 7 | jaod | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( B < C \/ B = C ) -> ( A < B -> A < C ) ) ) |
| 9 | 2 8 | sylbid | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B <_ C -> ( A < B -> A < C ) ) ) |
| 10 | 9 | impcomd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A < B /\ B <_ C ) -> A < C ) ) |