This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: It is often more convenient to do calculations with *closed* coverings rather than open ones; here we show that it makes no difference (compare ovollb ). (Contributed by Mario Carneiro, 24-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ovollb2.1 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
|
| Assertion | ovollb2 | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> ( vol* ` A ) <_ sup ( ran S , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovollb2.1 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
|
| 2 | simpr | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> A C_ U. ran ( [,] o. F ) ) |
|
| 3 | ovolficcss | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> U. ran ( [,] o. F ) C_ RR ) |
|
| 4 | 3 | adantr | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> U. ran ( [,] o. F ) C_ RR ) |
| 5 | 2 4 | sstrd | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> A C_ RR ) |
| 6 | ovolcl | |- ( A C_ RR -> ( vol* ` A ) e. RR* ) |
|
| 7 | 5 6 | syl | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> ( vol* ` A ) e. RR* ) |
| 8 | 7 | adantr | |- ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) = +oo ) -> ( vol* ` A ) e. RR* ) |
| 9 | pnfge | |- ( ( vol* ` A ) e. RR* -> ( vol* ` A ) <_ +oo ) |
|
| 10 | 8 9 | syl | |- ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) = +oo ) -> ( vol* ` A ) <_ +oo ) |
| 11 | simpr | |- ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) = +oo ) -> sup ( ran S , RR* , < ) = +oo ) |
|
| 12 | 10 11 | breqtrrd | |- ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) = +oo ) -> ( vol* ` A ) <_ sup ( ran S , RR* , < ) ) |
| 13 | eqid | |- ( ( abs o. - ) o. F ) = ( ( abs o. - ) o. F ) |
|
| 14 | 13 1 | ovolsf | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> S : NN --> ( 0 [,) +oo ) ) |
| 15 | 14 | adantr | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> S : NN --> ( 0 [,) +oo ) ) |
| 16 | 15 | frnd | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> ran S C_ ( 0 [,) +oo ) ) |
| 17 | rge0ssre | |- ( 0 [,) +oo ) C_ RR |
|
| 18 | 16 17 | sstrdi | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> ran S C_ RR ) |
| 19 | 1nn | |- 1 e. NN |
|
| 20 | 15 | fdmd | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> dom S = NN ) |
| 21 | 19 20 | eleqtrrid | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> 1 e. dom S ) |
| 22 | 21 | ne0d | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> dom S =/= (/) ) |
| 23 | dm0rn0 | |- ( dom S = (/) <-> ran S = (/) ) |
|
| 24 | 23 | necon3bii | |- ( dom S =/= (/) <-> ran S =/= (/) ) |
| 25 | 22 24 | sylib | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> ran S =/= (/) ) |
| 26 | supxrre2 | |- ( ( ran S C_ RR /\ ran S =/= (/) ) -> ( sup ( ran S , RR* , < ) e. RR <-> sup ( ran S , RR* , < ) =/= +oo ) ) |
|
| 27 | 18 25 26 | syl2anc | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> ( sup ( ran S , RR* , < ) e. RR <-> sup ( ran S , RR* , < ) =/= +oo ) ) |
| 28 | 27 | biimpar | |- ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) =/= +oo ) -> sup ( ran S , RR* , < ) e. RR ) |
| 29 | 2fveq3 | |- ( m = n -> ( 1st ` ( F ` m ) ) = ( 1st ` ( F ` n ) ) ) |
|
| 30 | oveq2 | |- ( m = n -> ( 2 ^ m ) = ( 2 ^ n ) ) |
|
| 31 | 30 | oveq2d | |- ( m = n -> ( ( x / 2 ) / ( 2 ^ m ) ) = ( ( x / 2 ) / ( 2 ^ n ) ) ) |
| 32 | 29 31 | oveq12d | |- ( m = n -> ( ( 1st ` ( F ` m ) ) - ( ( x / 2 ) / ( 2 ^ m ) ) ) = ( ( 1st ` ( F ` n ) ) - ( ( x / 2 ) / ( 2 ^ n ) ) ) ) |
| 33 | 2fveq3 | |- ( m = n -> ( 2nd ` ( F ` m ) ) = ( 2nd ` ( F ` n ) ) ) |
|
| 34 | 33 31 | oveq12d | |- ( m = n -> ( ( 2nd ` ( F ` m ) ) + ( ( x / 2 ) / ( 2 ^ m ) ) ) = ( ( 2nd ` ( F ` n ) ) + ( ( x / 2 ) / ( 2 ^ n ) ) ) ) |
| 35 | 32 34 | opeq12d | |- ( m = n -> <. ( ( 1st ` ( F ` m ) ) - ( ( x / 2 ) / ( 2 ^ m ) ) ) , ( ( 2nd ` ( F ` m ) ) + ( ( x / 2 ) / ( 2 ^ m ) ) ) >. = <. ( ( 1st ` ( F ` n ) ) - ( ( x / 2 ) / ( 2 ^ n ) ) ) , ( ( 2nd ` ( F ` n ) ) + ( ( x / 2 ) / ( 2 ^ n ) ) ) >. ) |
| 36 | 35 | cbvmptv | |- ( m e. NN |-> <. ( ( 1st ` ( F ` m ) ) - ( ( x / 2 ) / ( 2 ^ m ) ) ) , ( ( 2nd ` ( F ` m ) ) + ( ( x / 2 ) / ( 2 ^ m ) ) ) >. ) = ( n e. NN |-> <. ( ( 1st ` ( F ` n ) ) - ( ( x / 2 ) / ( 2 ^ n ) ) ) , ( ( 2nd ` ( F ` n ) ) + ( ( x / 2 ) / ( 2 ^ n ) ) ) >. ) |
| 37 | eqid | |- seq 1 ( + , ( ( abs o. - ) o. ( m e. NN |-> <. ( ( 1st ` ( F ` m ) ) - ( ( x / 2 ) / ( 2 ^ m ) ) ) , ( ( 2nd ` ( F ` m ) ) + ( ( x / 2 ) / ( 2 ^ m ) ) ) >. ) ) ) = seq 1 ( + , ( ( abs o. - ) o. ( m e. NN |-> <. ( ( 1st ` ( F ` m ) ) - ( ( x / 2 ) / ( 2 ^ m ) ) ) , ( ( 2nd ` ( F ` m ) ) + ( ( x / 2 ) / ( 2 ^ m ) ) ) >. ) ) ) |
|
| 38 | simplll | |- ( ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) e. RR ) /\ x e. RR+ ) -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 39 | simpllr | |- ( ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) e. RR ) /\ x e. RR+ ) -> A C_ U. ran ( [,] o. F ) ) |
|
| 40 | simpr | |- ( ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) e. RR ) /\ x e. RR+ ) -> x e. RR+ ) |
|
| 41 | simplr | |- ( ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) e. RR ) /\ x e. RR+ ) -> sup ( ran S , RR* , < ) e. RR ) |
|
| 42 | 1 36 37 38 39 40 41 | ovollb2lem | |- ( ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) e. RR ) /\ x e. RR+ ) -> ( vol* ` A ) <_ ( sup ( ran S , RR* , < ) + x ) ) |
| 43 | 42 | ralrimiva | |- ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) e. RR ) -> A. x e. RR+ ( vol* ` A ) <_ ( sup ( ran S , RR* , < ) + x ) ) |
| 44 | xralrple | |- ( ( ( vol* ` A ) e. RR* /\ sup ( ran S , RR* , < ) e. RR ) -> ( ( vol* ` A ) <_ sup ( ran S , RR* , < ) <-> A. x e. RR+ ( vol* ` A ) <_ ( sup ( ran S , RR* , < ) + x ) ) ) |
|
| 45 | 7 44 | sylan | |- ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) e. RR ) -> ( ( vol* ` A ) <_ sup ( ran S , RR* , < ) <-> A. x e. RR+ ( vol* ` A ) <_ ( sup ( ran S , RR* , < ) + x ) ) ) |
| 46 | 43 45 | mpbird | |- ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) e. RR ) -> ( vol* ` A ) <_ sup ( ran S , RR* , < ) ) |
| 47 | 28 46 | syldan | |- ( ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) /\ sup ( ran S , RR* , < ) =/= +oo ) -> ( vol* ` A ) <_ sup ( ran S , RR* , < ) ) |
| 48 | 12 47 | pm2.61dane | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. F ) ) -> ( vol* ` A ) <_ sup ( ran S , RR* , < ) ) |