This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal is less than or equal to its sum with another. Part of Exercise 5 of TakeutiZaring p. 62. Lemma 3.2 of Schloeder p. 7. (For the other part see oaord1 .) (Contributed by NM, 6-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oaword1 | |- ( ( A e. On /\ B e. On ) -> A C_ ( A +o B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oa0 | |- ( A e. On -> ( A +o (/) ) = A ) |
|
| 2 | 1 | adantr | |- ( ( A e. On /\ B e. On ) -> ( A +o (/) ) = A ) |
| 3 | 0ss | |- (/) C_ B |
|
| 4 | 0elon | |- (/) e. On |
|
| 5 | oaword | |- ( ( (/) e. On /\ B e. On /\ A e. On ) -> ( (/) C_ B <-> ( A +o (/) ) C_ ( A +o B ) ) ) |
|
| 6 | 5 | 3com13 | |- ( ( A e. On /\ B e. On /\ (/) e. On ) -> ( (/) C_ B <-> ( A +o (/) ) C_ ( A +o B ) ) ) |
| 7 | 4 6 | mp3an3 | |- ( ( A e. On /\ B e. On ) -> ( (/) C_ B <-> ( A +o (/) ) C_ ( A +o B ) ) ) |
| 8 | 3 7 | mpbii | |- ( ( A e. On /\ B e. On ) -> ( A +o (/) ) C_ ( A +o B ) ) |
| 9 | 2 8 | eqsstrrd | |- ( ( A e. On /\ B e. On ) -> A C_ ( A +o B ) ) |