This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure law for ordinal exponentiation. Remark 2.8 of Schloeder p. 5. (Contributed by NM, 1-Jan-2005) (Proof shortened by Andrew Salmon, 22-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oecl | |- ( ( A e. On /\ B e. On ) -> ( A ^o B ) e. On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( B = (/) -> ( (/) ^o B ) = ( (/) ^o (/) ) ) |
|
| 2 | oe0m0 | |- ( (/) ^o (/) ) = 1o |
|
| 3 | 1on | |- 1o e. On |
|
| 4 | 2 3 | eqeltri | |- ( (/) ^o (/) ) e. On |
| 5 | 1 4 | eqeltrdi | |- ( B = (/) -> ( (/) ^o B ) e. On ) |
| 6 | 5 | adantl | |- ( ( B e. On /\ B = (/) ) -> ( (/) ^o B ) e. On ) |
| 7 | oe0m1 | |- ( B e. On -> ( (/) e. B <-> ( (/) ^o B ) = (/) ) ) |
|
| 8 | 7 | biimpa | |- ( ( B e. On /\ (/) e. B ) -> ( (/) ^o B ) = (/) ) |
| 9 | 0elon | |- (/) e. On |
|
| 10 | 8 9 | eqeltrdi | |- ( ( B e. On /\ (/) e. B ) -> ( (/) ^o B ) e. On ) |
| 11 | 10 | adantll | |- ( ( ( B e. On /\ B e. On ) /\ (/) e. B ) -> ( (/) ^o B ) e. On ) |
| 12 | 6 11 | oe0lem | |- ( ( B e. On /\ B e. On ) -> ( (/) ^o B ) e. On ) |
| 13 | 12 | anidms | |- ( B e. On -> ( (/) ^o B ) e. On ) |
| 14 | oveq1 | |- ( A = (/) -> ( A ^o B ) = ( (/) ^o B ) ) |
|
| 15 | 14 | eleq1d | |- ( A = (/) -> ( ( A ^o B ) e. On <-> ( (/) ^o B ) e. On ) ) |
| 16 | 13 15 | imbitrrid | |- ( A = (/) -> ( B e. On -> ( A ^o B ) e. On ) ) |
| 17 | 16 | impcom | |- ( ( B e. On /\ A = (/) ) -> ( A ^o B ) e. On ) |
| 18 | oveq2 | |- ( x = (/) -> ( A ^o x ) = ( A ^o (/) ) ) |
|
| 19 | 18 | eleq1d | |- ( x = (/) -> ( ( A ^o x ) e. On <-> ( A ^o (/) ) e. On ) ) |
| 20 | oveq2 | |- ( x = y -> ( A ^o x ) = ( A ^o y ) ) |
|
| 21 | 20 | eleq1d | |- ( x = y -> ( ( A ^o x ) e. On <-> ( A ^o y ) e. On ) ) |
| 22 | oveq2 | |- ( x = suc y -> ( A ^o x ) = ( A ^o suc y ) ) |
|
| 23 | 22 | eleq1d | |- ( x = suc y -> ( ( A ^o x ) e. On <-> ( A ^o suc y ) e. On ) ) |
| 24 | oveq2 | |- ( x = B -> ( A ^o x ) = ( A ^o B ) ) |
|
| 25 | 24 | eleq1d | |- ( x = B -> ( ( A ^o x ) e. On <-> ( A ^o B ) e. On ) ) |
| 26 | oe0 | |- ( A e. On -> ( A ^o (/) ) = 1o ) |
|
| 27 | 26 3 | eqeltrdi | |- ( A e. On -> ( A ^o (/) ) e. On ) |
| 28 | 27 | adantr | |- ( ( A e. On /\ (/) e. A ) -> ( A ^o (/) ) e. On ) |
| 29 | omcl | |- ( ( ( A ^o y ) e. On /\ A e. On ) -> ( ( A ^o y ) .o A ) e. On ) |
|
| 30 | 29 | expcom | |- ( A e. On -> ( ( A ^o y ) e. On -> ( ( A ^o y ) .o A ) e. On ) ) |
| 31 | 30 | adantr | |- ( ( A e. On /\ y e. On ) -> ( ( A ^o y ) e. On -> ( ( A ^o y ) .o A ) e. On ) ) |
| 32 | oesuc | |- ( ( A e. On /\ y e. On ) -> ( A ^o suc y ) = ( ( A ^o y ) .o A ) ) |
|
| 33 | 32 | eleq1d | |- ( ( A e. On /\ y e. On ) -> ( ( A ^o suc y ) e. On <-> ( ( A ^o y ) .o A ) e. On ) ) |
| 34 | 31 33 | sylibrd | |- ( ( A e. On /\ y e. On ) -> ( ( A ^o y ) e. On -> ( A ^o suc y ) e. On ) ) |
| 35 | 34 | expcom | |- ( y e. On -> ( A e. On -> ( ( A ^o y ) e. On -> ( A ^o suc y ) e. On ) ) ) |
| 36 | 35 | adantrd | |- ( y e. On -> ( ( A e. On /\ (/) e. A ) -> ( ( A ^o y ) e. On -> ( A ^o suc y ) e. On ) ) ) |
| 37 | vex | |- x e. _V |
|
| 38 | iunon | |- ( ( x e. _V /\ A. y e. x ( A ^o y ) e. On ) -> U_ y e. x ( A ^o y ) e. On ) |
|
| 39 | 37 38 | mpan | |- ( A. y e. x ( A ^o y ) e. On -> U_ y e. x ( A ^o y ) e. On ) |
| 40 | oelim | |- ( ( ( A e. On /\ ( x e. _V /\ Lim x ) ) /\ (/) e. A ) -> ( A ^o x ) = U_ y e. x ( A ^o y ) ) |
|
| 41 | 37 40 | mpanlr1 | |- ( ( ( A e. On /\ Lim x ) /\ (/) e. A ) -> ( A ^o x ) = U_ y e. x ( A ^o y ) ) |
| 42 | 41 | anasss | |- ( ( A e. On /\ ( Lim x /\ (/) e. A ) ) -> ( A ^o x ) = U_ y e. x ( A ^o y ) ) |
| 43 | 42 | an12s | |- ( ( Lim x /\ ( A e. On /\ (/) e. A ) ) -> ( A ^o x ) = U_ y e. x ( A ^o y ) ) |
| 44 | 43 | eleq1d | |- ( ( Lim x /\ ( A e. On /\ (/) e. A ) ) -> ( ( A ^o x ) e. On <-> U_ y e. x ( A ^o y ) e. On ) ) |
| 45 | 39 44 | imbitrrid | |- ( ( Lim x /\ ( A e. On /\ (/) e. A ) ) -> ( A. y e. x ( A ^o y ) e. On -> ( A ^o x ) e. On ) ) |
| 46 | 45 | ex | |- ( Lim x -> ( ( A e. On /\ (/) e. A ) -> ( A. y e. x ( A ^o y ) e. On -> ( A ^o x ) e. On ) ) ) |
| 47 | 19 21 23 25 28 36 46 | tfinds3 | |- ( B e. On -> ( ( A e. On /\ (/) e. A ) -> ( A ^o B ) e. On ) ) |
| 48 | 47 | expd | |- ( B e. On -> ( A e. On -> ( (/) e. A -> ( A ^o B ) e. On ) ) ) |
| 49 | 48 | com12 | |- ( A e. On -> ( B e. On -> ( (/) e. A -> ( A ^o B ) e. On ) ) ) |
| 50 | 49 | imp31 | |- ( ( ( A e. On /\ B e. On ) /\ (/) e. A ) -> ( A ^o B ) e. On ) |
| 51 | 17 50 | oe0lem | |- ( ( A e. On /\ B e. On ) -> ( A ^o B ) e. On ) |