This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordinal multiplication with 1. Proposition 8.18(2) of TakeutiZaring p. 63. Lemma 2.15 of Schloeder p. 5. (Contributed by NM, 29-Oct-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | om1 | |- ( A e. On -> ( A .o 1o ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o | |- 1o = suc (/) |
|
| 2 | 1 | oveq2i | |- ( A .o 1o ) = ( A .o suc (/) ) |
| 3 | peano1 | |- (/) e. _om |
|
| 4 | onmsuc | |- ( ( A e. On /\ (/) e. _om ) -> ( A .o suc (/) ) = ( ( A .o (/) ) +o A ) ) |
|
| 5 | 3 4 | mpan2 | |- ( A e. On -> ( A .o suc (/) ) = ( ( A .o (/) ) +o A ) ) |
| 6 | 2 5 | eqtrid | |- ( A e. On -> ( A .o 1o ) = ( ( A .o (/) ) +o A ) ) |
| 7 | om0 | |- ( A e. On -> ( A .o (/) ) = (/) ) |
|
| 8 | 7 | oveq1d | |- ( A e. On -> ( ( A .o (/) ) +o A ) = ( (/) +o A ) ) |
| 9 | oa0r | |- ( A e. On -> ( (/) +o A ) = A ) |
|
| 10 | 6 8 9 | 3eqtrd | |- ( A e. On -> ( A .o 1o ) = A ) |