This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998) (Revised by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opeq2 | |- ( A = B -> <. C , A >. = <. C , B >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | |- ( A = B -> ( A e. _V <-> B e. _V ) ) |
|
| 2 | 1 | anbi2d | |- ( A = B -> ( ( C e. _V /\ A e. _V ) <-> ( C e. _V /\ B e. _V ) ) ) |
| 3 | preq2 | |- ( A = B -> { C , A } = { C , B } ) |
|
| 4 | 3 | preq2d | |- ( A = B -> { { C } , { C , A } } = { { C } , { C , B } } ) |
| 5 | 2 4 | ifbieq1d | |- ( A = B -> if ( ( C e. _V /\ A e. _V ) , { { C } , { C , A } } , (/) ) = if ( ( C e. _V /\ B e. _V ) , { { C } , { C , B } } , (/) ) ) |
| 6 | dfopif | |- <. C , A >. = if ( ( C e. _V /\ A e. _V ) , { { C } , { C , A } } , (/) ) |
|
| 7 | dfopif | |- <. C , B >. = if ( ( C e. _V /\ B e. _V ) , { { C } , { C , B } } , (/) ) |
|
| 8 | 5 6 7 | 3eqtr4g | |- ( A = B -> <. C , A >. = <. C , B >. ) |