This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The division algorithm for ordinal multiplication. (Contributed by Mario Carneiro, 28-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omeu | |- ( ( A e. On /\ B e. On /\ A =/= (/) ) -> E! z E. x e. On E. y e. A ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omeulem1 | |- ( ( A e. On /\ B e. On /\ A =/= (/) ) -> E. x e. On E. y e. A ( ( A .o x ) +o y ) = B ) |
|
| 2 | opex | |- <. x , y >. e. _V |
|
| 3 | 2 | isseti | |- E. z z = <. x , y >. |
| 4 | 19.41v | |- ( E. z ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) <-> ( E. z z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) ) |
|
| 5 | 3 4 | mpbiran | |- ( E. z ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) <-> ( ( A .o x ) +o y ) = B ) |
| 6 | 5 | rexbii | |- ( E. y e. A E. z ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) <-> E. y e. A ( ( A .o x ) +o y ) = B ) |
| 7 | rexcom4 | |- ( E. y e. A E. z ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) <-> E. z E. y e. A ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) ) |
|
| 8 | 6 7 | bitr3i | |- ( E. y e. A ( ( A .o x ) +o y ) = B <-> E. z E. y e. A ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) ) |
| 9 | 8 | rexbii | |- ( E. x e. On E. y e. A ( ( A .o x ) +o y ) = B <-> E. x e. On E. z E. y e. A ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) ) |
| 10 | rexcom4 | |- ( E. x e. On E. z E. y e. A ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) <-> E. z E. x e. On E. y e. A ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) ) |
|
| 11 | 9 10 | bitri | |- ( E. x e. On E. y e. A ( ( A .o x ) +o y ) = B <-> E. z E. x e. On E. y e. A ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) ) |
| 12 | 1 11 | sylib | |- ( ( A e. On /\ B e. On /\ A =/= (/) ) -> E. z E. x e. On E. y e. A ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) ) |
| 13 | simp2rl | |- ( ( ( A e. On /\ B e. On /\ A =/= (/) ) /\ ( ( x e. On /\ y e. A ) /\ ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) ) /\ ( ( r e. On /\ s e. A ) /\ ( t = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) ) ) -> z = <. x , y >. ) |
|
| 14 | simp3rl | |- ( ( ( A e. On /\ B e. On /\ A =/= (/) ) /\ ( ( x e. On /\ y e. A ) /\ ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) ) /\ ( ( r e. On /\ s e. A ) /\ ( t = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) ) ) -> t = <. r , s >. ) |
|
| 15 | simp2rr | |- ( ( ( A e. On /\ B e. On /\ A =/= (/) ) /\ ( ( x e. On /\ y e. A ) /\ ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) ) /\ ( ( r e. On /\ s e. A ) /\ ( t = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) ) ) -> ( ( A .o x ) +o y ) = B ) |
|
| 16 | simp3rr | |- ( ( ( A e. On /\ B e. On /\ A =/= (/) ) /\ ( ( x e. On /\ y e. A ) /\ ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) ) /\ ( ( r e. On /\ s e. A ) /\ ( t = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) ) ) -> ( ( A .o r ) +o s ) = B ) |
|
| 17 | 15 16 | eqtr4d | |- ( ( ( A e. On /\ B e. On /\ A =/= (/) ) /\ ( ( x e. On /\ y e. A ) /\ ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) ) /\ ( ( r e. On /\ s e. A ) /\ ( t = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) ) ) -> ( ( A .o x ) +o y ) = ( ( A .o r ) +o s ) ) |
| 18 | simp11 | |- ( ( ( A e. On /\ B e. On /\ A =/= (/) ) /\ ( ( x e. On /\ y e. A ) /\ ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) ) /\ ( ( r e. On /\ s e. A ) /\ ( t = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) ) ) -> A e. On ) |
|
| 19 | simp13 | |- ( ( ( A e. On /\ B e. On /\ A =/= (/) ) /\ ( ( x e. On /\ y e. A ) /\ ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) ) /\ ( ( r e. On /\ s e. A ) /\ ( t = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) ) ) -> A =/= (/) ) |
|
| 20 | simp2ll | |- ( ( ( A e. On /\ B e. On /\ A =/= (/) ) /\ ( ( x e. On /\ y e. A ) /\ ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) ) /\ ( ( r e. On /\ s e. A ) /\ ( t = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) ) ) -> x e. On ) |
|
| 21 | simp2lr | |- ( ( ( A e. On /\ B e. On /\ A =/= (/) ) /\ ( ( x e. On /\ y e. A ) /\ ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) ) /\ ( ( r e. On /\ s e. A ) /\ ( t = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) ) ) -> y e. A ) |
|
| 22 | simp3ll | |- ( ( ( A e. On /\ B e. On /\ A =/= (/) ) /\ ( ( x e. On /\ y e. A ) /\ ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) ) /\ ( ( r e. On /\ s e. A ) /\ ( t = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) ) ) -> r e. On ) |
|
| 23 | simp3lr | |- ( ( ( A e. On /\ B e. On /\ A =/= (/) ) /\ ( ( x e. On /\ y e. A ) /\ ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) ) /\ ( ( r e. On /\ s e. A ) /\ ( t = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) ) ) -> s e. A ) |
|
| 24 | omopth2 | |- ( ( ( A e. On /\ A =/= (/) ) /\ ( x e. On /\ y e. A ) /\ ( r e. On /\ s e. A ) ) -> ( ( ( A .o x ) +o y ) = ( ( A .o r ) +o s ) <-> ( x = r /\ y = s ) ) ) |
|
| 25 | 18 19 20 21 22 23 24 | syl222anc | |- ( ( ( A e. On /\ B e. On /\ A =/= (/) ) /\ ( ( x e. On /\ y e. A ) /\ ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) ) /\ ( ( r e. On /\ s e. A ) /\ ( t = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) ) ) -> ( ( ( A .o x ) +o y ) = ( ( A .o r ) +o s ) <-> ( x = r /\ y = s ) ) ) |
| 26 | 17 25 | mpbid | |- ( ( ( A e. On /\ B e. On /\ A =/= (/) ) /\ ( ( x e. On /\ y e. A ) /\ ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) ) /\ ( ( r e. On /\ s e. A ) /\ ( t = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) ) ) -> ( x = r /\ y = s ) ) |
| 27 | opeq12 | |- ( ( x = r /\ y = s ) -> <. x , y >. = <. r , s >. ) |
|
| 28 | 26 27 | syl | |- ( ( ( A e. On /\ B e. On /\ A =/= (/) ) /\ ( ( x e. On /\ y e. A ) /\ ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) ) /\ ( ( r e. On /\ s e. A ) /\ ( t = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) ) ) -> <. x , y >. = <. r , s >. ) |
| 29 | 14 28 | eqtr4d | |- ( ( ( A e. On /\ B e. On /\ A =/= (/) ) /\ ( ( x e. On /\ y e. A ) /\ ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) ) /\ ( ( r e. On /\ s e. A ) /\ ( t = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) ) ) -> t = <. x , y >. ) |
| 30 | 13 29 | eqtr4d | |- ( ( ( A e. On /\ B e. On /\ A =/= (/) ) /\ ( ( x e. On /\ y e. A ) /\ ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) ) /\ ( ( r e. On /\ s e. A ) /\ ( t = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) ) ) -> z = t ) |
| 31 | 30 | 3expia | |- ( ( ( A e. On /\ B e. On /\ A =/= (/) ) /\ ( ( x e. On /\ y e. A ) /\ ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) ) ) -> ( ( ( r e. On /\ s e. A ) /\ ( t = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) ) -> z = t ) ) |
| 32 | 31 | exp4b | |- ( ( A e. On /\ B e. On /\ A =/= (/) ) -> ( ( ( x e. On /\ y e. A ) /\ ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) ) -> ( ( r e. On /\ s e. A ) -> ( ( t = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) -> z = t ) ) ) ) |
| 33 | 32 | expd | |- ( ( A e. On /\ B e. On /\ A =/= (/) ) -> ( ( x e. On /\ y e. A ) -> ( ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) -> ( ( r e. On /\ s e. A ) -> ( ( t = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) -> z = t ) ) ) ) ) |
| 34 | 33 | rexlimdvv | |- ( ( A e. On /\ B e. On /\ A =/= (/) ) -> ( E. x e. On E. y e. A ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) -> ( ( r e. On /\ s e. A ) -> ( ( t = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) -> z = t ) ) ) ) |
| 35 | 34 | imp | |- ( ( ( A e. On /\ B e. On /\ A =/= (/) ) /\ E. x e. On E. y e. A ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) ) -> ( ( r e. On /\ s e. A ) -> ( ( t = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) -> z = t ) ) ) |
| 36 | 35 | rexlimdvv | |- ( ( ( A e. On /\ B e. On /\ A =/= (/) ) /\ E. x e. On E. y e. A ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) ) -> ( E. r e. On E. s e. A ( t = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) -> z = t ) ) |
| 37 | 36 | expimpd | |- ( ( A e. On /\ B e. On /\ A =/= (/) ) -> ( ( E. x e. On E. y e. A ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) /\ E. r e. On E. s e. A ( t = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) ) -> z = t ) ) |
| 38 | 37 | alrimivv | |- ( ( A e. On /\ B e. On /\ A =/= (/) ) -> A. z A. t ( ( E. x e. On E. y e. A ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) /\ E. r e. On E. s e. A ( t = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) ) -> z = t ) ) |
| 39 | opeq1 | |- ( x = r -> <. x , y >. = <. r , y >. ) |
|
| 40 | 39 | eqeq2d | |- ( x = r -> ( z = <. x , y >. <-> z = <. r , y >. ) ) |
| 41 | oveq2 | |- ( x = r -> ( A .o x ) = ( A .o r ) ) |
|
| 42 | 41 | oveq1d | |- ( x = r -> ( ( A .o x ) +o y ) = ( ( A .o r ) +o y ) ) |
| 43 | 42 | eqeq1d | |- ( x = r -> ( ( ( A .o x ) +o y ) = B <-> ( ( A .o r ) +o y ) = B ) ) |
| 44 | 40 43 | anbi12d | |- ( x = r -> ( ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) <-> ( z = <. r , y >. /\ ( ( A .o r ) +o y ) = B ) ) ) |
| 45 | opeq2 | |- ( y = s -> <. r , y >. = <. r , s >. ) |
|
| 46 | 45 | eqeq2d | |- ( y = s -> ( z = <. r , y >. <-> z = <. r , s >. ) ) |
| 47 | oveq2 | |- ( y = s -> ( ( A .o r ) +o y ) = ( ( A .o r ) +o s ) ) |
|
| 48 | 47 | eqeq1d | |- ( y = s -> ( ( ( A .o r ) +o y ) = B <-> ( ( A .o r ) +o s ) = B ) ) |
| 49 | 46 48 | anbi12d | |- ( y = s -> ( ( z = <. r , y >. /\ ( ( A .o r ) +o y ) = B ) <-> ( z = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) ) ) |
| 50 | 44 49 | cbvrex2vw | |- ( E. x e. On E. y e. A ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) <-> E. r e. On E. s e. A ( z = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) ) |
| 51 | eqeq1 | |- ( z = t -> ( z = <. r , s >. <-> t = <. r , s >. ) ) |
|
| 52 | 51 | anbi1d | |- ( z = t -> ( ( z = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) <-> ( t = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) ) ) |
| 53 | 52 | 2rexbidv | |- ( z = t -> ( E. r e. On E. s e. A ( z = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) <-> E. r e. On E. s e. A ( t = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) ) ) |
| 54 | 50 53 | bitrid | |- ( z = t -> ( E. x e. On E. y e. A ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) <-> E. r e. On E. s e. A ( t = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) ) ) |
| 55 | 54 | eu4 | |- ( E! z E. x e. On E. y e. A ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) <-> ( E. z E. x e. On E. y e. A ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) /\ A. z A. t ( ( E. x e. On E. y e. A ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) /\ E. r e. On E. s e. A ( t = <. r , s >. /\ ( ( A .o r ) +o s ) = B ) ) -> z = t ) ) ) |
| 56 | 12 38 55 | sylanbrc | |- ( ( A e. On /\ B e. On /\ A =/= (/) ) -> E! z E. x e. On E. y e. A ( z = <. x , y >. /\ ( ( A .o x ) +o y ) = B ) ) |