This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for oeeu . (Contributed by Mario Carneiro, 28-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oeeu.1 | |- X = U. |^| { x e. On | B e. ( A ^o x ) } |
|
| Assertion | oeeulem | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( X e. On /\ ( A ^o X ) C_ B /\ B e. ( A ^o suc X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oeeu.1 | |- X = U. |^| { x e. On | B e. ( A ^o x ) } |
|
| 2 | eldifi | |- ( B e. ( On \ 1o ) -> B e. On ) |
|
| 3 | 2 | adantl | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> B e. On ) |
| 4 | onsuc | |- ( B e. On -> suc B e. On ) |
|
| 5 | 3 4 | syl | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> suc B e. On ) |
| 6 | oeworde | |- ( ( A e. ( On \ 2o ) /\ suc B e. On ) -> suc B C_ ( A ^o suc B ) ) |
|
| 7 | 5 6 | syldan | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> suc B C_ ( A ^o suc B ) ) |
| 8 | sucidg | |- ( B e. On -> B e. suc B ) |
|
| 9 | 3 8 | syl | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> B e. suc B ) |
| 10 | 7 9 | sseldd | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> B e. ( A ^o suc B ) ) |
| 11 | oveq2 | |- ( x = suc B -> ( A ^o x ) = ( A ^o suc B ) ) |
|
| 12 | 11 | eleq2d | |- ( x = suc B -> ( B e. ( A ^o x ) <-> B e. ( A ^o suc B ) ) ) |
| 13 | 12 | rspcev | |- ( ( suc B e. On /\ B e. ( A ^o suc B ) ) -> E. x e. On B e. ( A ^o x ) ) |
| 14 | 5 10 13 | syl2anc | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> E. x e. On B e. ( A ^o x ) ) |
| 15 | onintrab2 | |- ( E. x e. On B e. ( A ^o x ) <-> |^| { x e. On | B e. ( A ^o x ) } e. On ) |
|
| 16 | 14 15 | sylib | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> |^| { x e. On | B e. ( A ^o x ) } e. On ) |
| 17 | onuni | |- ( |^| { x e. On | B e. ( A ^o x ) } e. On -> U. |^| { x e. On | B e. ( A ^o x ) } e. On ) |
|
| 18 | 16 17 | syl | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> U. |^| { x e. On | B e. ( A ^o x ) } e. On ) |
| 19 | 1 18 | eqeltrid | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> X e. On ) |
| 20 | sucidg | |- ( X e. On -> X e. suc X ) |
|
| 21 | 19 20 | syl | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> X e. suc X ) |
| 22 | suceq | |- ( X = U. |^| { x e. On | B e. ( A ^o x ) } -> suc X = suc U. |^| { x e. On | B e. ( A ^o x ) } ) |
|
| 23 | 1 22 | ax-mp | |- suc X = suc U. |^| { x e. On | B e. ( A ^o x ) } |
| 24 | dif1o | |- ( B e. ( On \ 1o ) <-> ( B e. On /\ B =/= (/) ) ) |
|
| 25 | 24 | simprbi | |- ( B e. ( On \ 1o ) -> B =/= (/) ) |
| 26 | 25 | adantl | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> B =/= (/) ) |
| 27 | ssrab2 | |- { x e. On | B e. ( A ^o x ) } C_ On |
|
| 28 | rabn0 | |- ( { x e. On | B e. ( A ^o x ) } =/= (/) <-> E. x e. On B e. ( A ^o x ) ) |
|
| 29 | 14 28 | sylibr | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> { x e. On | B e. ( A ^o x ) } =/= (/) ) |
| 30 | onint | |- ( ( { x e. On | B e. ( A ^o x ) } C_ On /\ { x e. On | B e. ( A ^o x ) } =/= (/) ) -> |^| { x e. On | B e. ( A ^o x ) } e. { x e. On | B e. ( A ^o x ) } ) |
|
| 31 | 27 29 30 | sylancr | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> |^| { x e. On | B e. ( A ^o x ) } e. { x e. On | B e. ( A ^o x ) } ) |
| 32 | eleq1 | |- ( |^| { x e. On | B e. ( A ^o x ) } = (/) -> ( |^| { x e. On | B e. ( A ^o x ) } e. { x e. On | B e. ( A ^o x ) } <-> (/) e. { x e. On | B e. ( A ^o x ) } ) ) |
|
| 33 | 31 32 | syl5ibcom | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( |^| { x e. On | B e. ( A ^o x ) } = (/) -> (/) e. { x e. On | B e. ( A ^o x ) } ) ) |
| 34 | oveq2 | |- ( x = (/) -> ( A ^o x ) = ( A ^o (/) ) ) |
|
| 35 | 34 | eleq2d | |- ( x = (/) -> ( B e. ( A ^o x ) <-> B e. ( A ^o (/) ) ) ) |
| 36 | 35 | elrab | |- ( (/) e. { x e. On | B e. ( A ^o x ) } <-> ( (/) e. On /\ B e. ( A ^o (/) ) ) ) |
| 37 | 36 | simprbi | |- ( (/) e. { x e. On | B e. ( A ^o x ) } -> B e. ( A ^o (/) ) ) |
| 38 | eldifi | |- ( A e. ( On \ 2o ) -> A e. On ) |
|
| 39 | 38 | adantr | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> A e. On ) |
| 40 | oe0 | |- ( A e. On -> ( A ^o (/) ) = 1o ) |
|
| 41 | 39 40 | syl | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( A ^o (/) ) = 1o ) |
| 42 | 41 | eleq2d | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( B e. ( A ^o (/) ) <-> B e. 1o ) ) |
| 43 | el1o | |- ( B e. 1o <-> B = (/) ) |
|
| 44 | 42 43 | bitrdi | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( B e. ( A ^o (/) ) <-> B = (/) ) ) |
| 45 | 37 44 | imbitrid | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( (/) e. { x e. On | B e. ( A ^o x ) } -> B = (/) ) ) |
| 46 | 33 45 | syld | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( |^| { x e. On | B e. ( A ^o x ) } = (/) -> B = (/) ) ) |
| 47 | 46 | necon3ad | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( B =/= (/) -> -. |^| { x e. On | B e. ( A ^o x ) } = (/) ) ) |
| 48 | 26 47 | mpd | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> -. |^| { x e. On | B e. ( A ^o x ) } = (/) ) |
| 49 | limuni | |- ( Lim |^| { x e. On | B e. ( A ^o x ) } -> |^| { x e. On | B e. ( A ^o x ) } = U. |^| { x e. On | B e. ( A ^o x ) } ) |
|
| 50 | 49 1 | eqtr4di | |- ( Lim |^| { x e. On | B e. ( A ^o x ) } -> |^| { x e. On | B e. ( A ^o x ) } = X ) |
| 51 | 50 | adantl | |- ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ Lim |^| { x e. On | B e. ( A ^o x ) } ) -> |^| { x e. On | B e. ( A ^o x ) } = X ) |
| 52 | 31 | adantr | |- ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ Lim |^| { x e. On | B e. ( A ^o x ) } ) -> |^| { x e. On | B e. ( A ^o x ) } e. { x e. On | B e. ( A ^o x ) } ) |
| 53 | 51 52 | eqeltrrd | |- ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ Lim |^| { x e. On | B e. ( A ^o x ) } ) -> X e. { x e. On | B e. ( A ^o x ) } ) |
| 54 | oveq2 | |- ( y = X -> ( A ^o y ) = ( A ^o X ) ) |
|
| 55 | 54 | eleq2d | |- ( y = X -> ( B e. ( A ^o y ) <-> B e. ( A ^o X ) ) ) |
| 56 | oveq2 | |- ( x = y -> ( A ^o x ) = ( A ^o y ) ) |
|
| 57 | 56 | eleq2d | |- ( x = y -> ( B e. ( A ^o x ) <-> B e. ( A ^o y ) ) ) |
| 58 | 57 | cbvrabv | |- { x e. On | B e. ( A ^o x ) } = { y e. On | B e. ( A ^o y ) } |
| 59 | 55 58 | elrab2 | |- ( X e. { x e. On | B e. ( A ^o x ) } <-> ( X e. On /\ B e. ( A ^o X ) ) ) |
| 60 | 59 | simprbi | |- ( X e. { x e. On | B e. ( A ^o x ) } -> B e. ( A ^o X ) ) |
| 61 | 53 60 | syl | |- ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ Lim |^| { x e. On | B e. ( A ^o x ) } ) -> B e. ( A ^o X ) ) |
| 62 | 38 | ad2antrr | |- ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ Lim |^| { x e. On | B e. ( A ^o x ) } ) -> A e. On ) |
| 63 | limeq | |- ( |^| { x e. On | B e. ( A ^o x ) } = X -> ( Lim |^| { x e. On | B e. ( A ^o x ) } <-> Lim X ) ) |
|
| 64 | 50 63 | syl | |- ( Lim |^| { x e. On | B e. ( A ^o x ) } -> ( Lim |^| { x e. On | B e. ( A ^o x ) } <-> Lim X ) ) |
| 65 | 64 | ibi | |- ( Lim |^| { x e. On | B e. ( A ^o x ) } -> Lim X ) |
| 66 | 19 65 | anim12i | |- ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ Lim |^| { x e. On | B e. ( A ^o x ) } ) -> ( X e. On /\ Lim X ) ) |
| 67 | dif20el | |- ( A e. ( On \ 2o ) -> (/) e. A ) |
|
| 68 | 67 | ad2antrr | |- ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ Lim |^| { x e. On | B e. ( A ^o x ) } ) -> (/) e. A ) |
| 69 | oelim | |- ( ( ( A e. On /\ ( X e. On /\ Lim X ) ) /\ (/) e. A ) -> ( A ^o X ) = U_ y e. X ( A ^o y ) ) |
|
| 70 | 62 66 68 69 | syl21anc | |- ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ Lim |^| { x e. On | B e. ( A ^o x ) } ) -> ( A ^o X ) = U_ y e. X ( A ^o y ) ) |
| 71 | 61 70 | eleqtrd | |- ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ Lim |^| { x e. On | B e. ( A ^o x ) } ) -> B e. U_ y e. X ( A ^o y ) ) |
| 72 | eliun | |- ( B e. U_ y e. X ( A ^o y ) <-> E. y e. X B e. ( A ^o y ) ) |
|
| 73 | 71 72 | sylib | |- ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ Lim |^| { x e. On | B e. ( A ^o x ) } ) -> E. y e. X B e. ( A ^o y ) ) |
| 74 | 19 | adantr | |- ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ Lim |^| { x e. On | B e. ( A ^o x ) } ) -> X e. On ) |
| 75 | onss | |- ( X e. On -> X C_ On ) |
|
| 76 | 74 75 | syl | |- ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ Lim |^| { x e. On | B e. ( A ^o x ) } ) -> X C_ On ) |
| 77 | 76 | sselda | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ Lim |^| { x e. On | B e. ( A ^o x ) } ) /\ y e. X ) -> y e. On ) |
| 78 | 51 | eleq2d | |- ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ Lim |^| { x e. On | B e. ( A ^o x ) } ) -> ( y e. |^| { x e. On | B e. ( A ^o x ) } <-> y e. X ) ) |
| 79 | 78 | biimpar | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ Lim |^| { x e. On | B e. ( A ^o x ) } ) /\ y e. X ) -> y e. |^| { x e. On | B e. ( A ^o x ) } ) |
| 80 | 57 | onnminsb | |- ( y e. On -> ( y e. |^| { x e. On | B e. ( A ^o x ) } -> -. B e. ( A ^o y ) ) ) |
| 81 | 77 79 80 | sylc | |- ( ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ Lim |^| { x e. On | B e. ( A ^o x ) } ) /\ y e. X ) -> -. B e. ( A ^o y ) ) |
| 82 | 81 | nrexdv | |- ( ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) /\ Lim |^| { x e. On | B e. ( A ^o x ) } ) -> -. E. y e. X B e. ( A ^o y ) ) |
| 83 | 73 82 | pm2.65da | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> -. Lim |^| { x e. On | B e. ( A ^o x ) } ) |
| 84 | ioran | |- ( -. ( |^| { x e. On | B e. ( A ^o x ) } = (/) \/ Lim |^| { x e. On | B e. ( A ^o x ) } ) <-> ( -. |^| { x e. On | B e. ( A ^o x ) } = (/) /\ -. Lim |^| { x e. On | B e. ( A ^o x ) } ) ) |
|
| 85 | 48 83 84 | sylanbrc | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> -. ( |^| { x e. On | B e. ( A ^o x ) } = (/) \/ Lim |^| { x e. On | B e. ( A ^o x ) } ) ) |
| 86 | eloni | |- ( |^| { x e. On | B e. ( A ^o x ) } e. On -> Ord |^| { x e. On | B e. ( A ^o x ) } ) |
|
| 87 | unizlim | |- ( Ord |^| { x e. On | B e. ( A ^o x ) } -> ( |^| { x e. On | B e. ( A ^o x ) } = U. |^| { x e. On | B e. ( A ^o x ) } <-> ( |^| { x e. On | B e. ( A ^o x ) } = (/) \/ Lim |^| { x e. On | B e. ( A ^o x ) } ) ) ) |
|
| 88 | 16 86 87 | 3syl | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( |^| { x e. On | B e. ( A ^o x ) } = U. |^| { x e. On | B e. ( A ^o x ) } <-> ( |^| { x e. On | B e. ( A ^o x ) } = (/) \/ Lim |^| { x e. On | B e. ( A ^o x ) } ) ) ) |
| 89 | 85 88 | mtbird | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> -. |^| { x e. On | B e. ( A ^o x ) } = U. |^| { x e. On | B e. ( A ^o x ) } ) |
| 90 | orduniorsuc | |- ( Ord |^| { x e. On | B e. ( A ^o x ) } -> ( |^| { x e. On | B e. ( A ^o x ) } = U. |^| { x e. On | B e. ( A ^o x ) } \/ |^| { x e. On | B e. ( A ^o x ) } = suc U. |^| { x e. On | B e. ( A ^o x ) } ) ) |
|
| 91 | 16 86 90 | 3syl | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( |^| { x e. On | B e. ( A ^o x ) } = U. |^| { x e. On | B e. ( A ^o x ) } \/ |^| { x e. On | B e. ( A ^o x ) } = suc U. |^| { x e. On | B e. ( A ^o x ) } ) ) |
| 92 | 91 | ord | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( -. |^| { x e. On | B e. ( A ^o x ) } = U. |^| { x e. On | B e. ( A ^o x ) } -> |^| { x e. On | B e. ( A ^o x ) } = suc U. |^| { x e. On | B e. ( A ^o x ) } ) ) |
| 93 | 89 92 | mpd | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> |^| { x e. On | B e. ( A ^o x ) } = suc U. |^| { x e. On | B e. ( A ^o x ) } ) |
| 94 | 23 93 | eqtr4id | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> suc X = |^| { x e. On | B e. ( A ^o x ) } ) |
| 95 | 21 94 | eleqtrd | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> X e. |^| { x e. On | B e. ( A ^o x ) } ) |
| 96 | 58 | inteqi | |- |^| { x e. On | B e. ( A ^o x ) } = |^| { y e. On | B e. ( A ^o y ) } |
| 97 | 95 96 | eleqtrdi | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> X e. |^| { y e. On | B e. ( A ^o y ) } ) |
| 98 | 55 | onnminsb | |- ( X e. On -> ( X e. |^| { y e. On | B e. ( A ^o y ) } -> -. B e. ( A ^o X ) ) ) |
| 99 | 19 97 98 | sylc | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> -. B e. ( A ^o X ) ) |
| 100 | oecl | |- ( ( A e. On /\ X e. On ) -> ( A ^o X ) e. On ) |
|
| 101 | 39 19 100 | syl2anc | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( A ^o X ) e. On ) |
| 102 | ontri1 | |- ( ( ( A ^o X ) e. On /\ B e. On ) -> ( ( A ^o X ) C_ B <-> -. B e. ( A ^o X ) ) ) |
|
| 103 | 101 3 102 | syl2anc | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( ( A ^o X ) C_ B <-> -. B e. ( A ^o X ) ) ) |
| 104 | 99 103 | mpbird | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( A ^o X ) C_ B ) |
| 105 | 94 31 | eqeltrd | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> suc X e. { x e. On | B e. ( A ^o x ) } ) |
| 106 | oveq2 | |- ( y = suc X -> ( A ^o y ) = ( A ^o suc X ) ) |
|
| 107 | 106 | eleq2d | |- ( y = suc X -> ( B e. ( A ^o y ) <-> B e. ( A ^o suc X ) ) ) |
| 108 | 107 58 | elrab2 | |- ( suc X e. { x e. On | B e. ( A ^o x ) } <-> ( suc X e. On /\ B e. ( A ^o suc X ) ) ) |
| 109 | 108 | simprbi | |- ( suc X e. { x e. On | B e. ( A ^o x ) } -> B e. ( A ^o suc X ) ) |
| 110 | 105 109 | syl | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> B e. ( A ^o suc X ) ) |
| 111 | 19 104 110 | 3jca | |- ( ( A e. ( On \ 2o ) /\ B e. ( On \ 1o ) ) -> ( X e. On /\ ( A ^o X ) C_ B /\ B e. ( A ^o suc X ) ) ) |