This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak ordering property of ordinal multiplication. (Contributed by NM, 21-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omword | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( A C_ B <-> ( C .o A ) C_ ( C .o B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omord2 | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( A e. B <-> ( C .o A ) e. ( C .o B ) ) ) |
|
| 2 | 3anrot | |- ( ( C e. On /\ A e. On /\ B e. On ) <-> ( A e. On /\ B e. On /\ C e. On ) ) |
|
| 3 | omcan | |- ( ( ( C e. On /\ A e. On /\ B e. On ) /\ (/) e. C ) -> ( ( C .o A ) = ( C .o B ) <-> A = B ) ) |
|
| 4 | 2 3 | sylanbr | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( ( C .o A ) = ( C .o B ) <-> A = B ) ) |
| 5 | 4 | bicomd | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( A = B <-> ( C .o A ) = ( C .o B ) ) ) |
| 6 | 1 5 | orbi12d | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( ( A e. B \/ A = B ) <-> ( ( C .o A ) e. ( C .o B ) \/ ( C .o A ) = ( C .o B ) ) ) ) |
| 7 | onsseleq | |- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> ( A e. B \/ A = B ) ) ) |
|
| 8 | 7 | 3adant3 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A C_ B <-> ( A e. B \/ A = B ) ) ) |
| 9 | 8 | adantr | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( A C_ B <-> ( A e. B \/ A = B ) ) ) |
| 10 | omcl | |- ( ( C e. On /\ A e. On ) -> ( C .o A ) e. On ) |
|
| 11 | omcl | |- ( ( C e. On /\ B e. On ) -> ( C .o B ) e. On ) |
|
| 12 | 10 11 | anim12dan | |- ( ( C e. On /\ ( A e. On /\ B e. On ) ) -> ( ( C .o A ) e. On /\ ( C .o B ) e. On ) ) |
| 13 | 12 | ancoms | |- ( ( ( A e. On /\ B e. On ) /\ C e. On ) -> ( ( C .o A ) e. On /\ ( C .o B ) e. On ) ) |
| 14 | 13 | 3impa | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( C .o A ) e. On /\ ( C .o B ) e. On ) ) |
| 15 | onsseleq | |- ( ( ( C .o A ) e. On /\ ( C .o B ) e. On ) -> ( ( C .o A ) C_ ( C .o B ) <-> ( ( C .o A ) e. ( C .o B ) \/ ( C .o A ) = ( C .o B ) ) ) ) |
|
| 16 | 14 15 | syl | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( C .o A ) C_ ( C .o B ) <-> ( ( C .o A ) e. ( C .o B ) \/ ( C .o A ) = ( C .o B ) ) ) ) |
| 17 | 16 | adantr | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( ( C .o A ) C_ ( C .o B ) <-> ( ( C .o A ) e. ( C .o B ) \/ ( C .o A ) = ( C .o B ) ) ) ) |
| 18 | 6 9 17 | 3bitr4d | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( A C_ B <-> ( C .o A ) C_ ( C .o B ) ) ) |